Dakota
Version
Explore and Predict with Confidence
|
The primary namespace for DAKOTA. More...
Classes | |
class | ActiveSet |
Container class for active set tracking information. Contains the active set request vector and the derivative variables vector. More... | |
class | ActiveSubspaceModel |
Active subspace model for input (variable space) reduction. More... | |
class | AdaptedBasisModel |
Adapted basis model for input (variable space) reduction. More... | |
class | AdapterModel |
Derived model class which wraps call-back functions for solving minimization sub-problems. More... | |
class | AddAttributeVisitor |
Objects of this class are called by boost::appy_visitor to add attributes to HDF5 objects. More... | |
class | Analyzer |
Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy. More... | |
class | ApplicationInterface |
Derived class within the interface class hierarchy for supporting interfaces to simulation codes. More... | |
class | Approximation |
Base class for the approximation class hierarchy. More... | |
class | ApproximationInterface |
Derived class within the interface class hierarchy for supporting approximations to simulation-based results. More... | |
class | APPSEvalMgr |
Evaluation manager class for APPSPACK. More... | |
class | APPSOptimizer |
Wrapper class for HOPSPACK. More... | |
class | AppsTraits |
HOPSPACK-specific traits class. More... | |
class | ApreproWriter |
Utility used in derived write_core to write in aprepro format. More... | |
class | AttachScaleVisitor |
Objects of this class are called by boost::appy_visitor to add dimension scales (RealScale or StringScale) to HDF5 datasets. More... | |
struct | BaseConstructor |
Dummy struct for overloading letter-envelope constructors. More... | |
class | BootstrapSampler |
Actual boostrap sampler implementation for common data types. More... | |
class | BootstrapSampler< Teuchos::SerialDenseMatrix< OrdinalType, ScalarType > > |
Bootstrap sampler that is specialized to allow for the bootstrapping of RealMatrix. More... | |
class | BootstrapSamplerBase |
Base class/interface for the bootstrap sampler. More... | |
class | BootstrapSamplerWithGS |
A derived sampler to allow for user specification of the accessor methods. More... | |
class | C3Approximation |
Derived approximation class for global basis polynomials. More... | |
class | C3FnTrainData |
Handle for reference-counted pointer to C3FnTrainDataRep body. More... | |
class | COLINApplication |
class | COLINOptimizer |
Wrapper class for optimizers defined using COLIN. More... | |
class | COLINTraits |
A version of TraitsBase specialized for COLIN optimizers. More... | |
class | CollabHybridMetaIterator |
Meta-iterator for hybrid iteration using multiple collaborating optimization and nonlinear least squares methods. More... | |
class | CommandLineHandler |
Utility class for managing command line inputs to DAKOTA. More... | |
class | CommandShell |
Utility class which defines convenience operators for spawning processes with system calls. More... | |
class | ConcurrentMetaIterator |
Meta-iterator for multi-start iteration or pareto set optimization. More... | |
class | CONMINOptimizer |
Wrapper class for the CONMIN optimization library. More... | |
class | CONMINTraits |
A version of TraitsBase specialized for CONMIN optimizers. More... | |
class | ConsoleRedirector |
class | Constraints |
Base class for the variable constraints class hierarchy. More... | |
class | DAGSolutionData |
Container class for numerical solutions for a given DAG. More... | |
class | DakotaROLEqConstraints |
class | DakotaROLEqConstraintsGrad |
class | DakotaROLEqConstraintsHess |
class | DakotaROLIneqConstraints |
class | DakotaROLIneqConstraintsGrad |
class | DakotaROLIneqConstraintsHess |
class | DakotaROLObjective |
class | DakotaROLObjectiveGrad |
class | DakotaROLObjectiveHess |
class | DataEnvironment |
Handle class for environment specification data. More... | |
class | DataEnvironmentRep |
Body class for environment specification data. More... | |
class | DataFitSurrBasedLocalTraits |
Class for provably-convergent local surrogate-based optimization and nonlinear least squares. More... | |
class | DataFitSurrModel |
Derived model class within the surrogate model branch for managing data fit surrogates (global and local) More... | |
class | DataInterface |
Handle class for interface specification data. More... | |
class | DataMethod |
Handle class for method specification data. More... | |
class | DataMethodRep |
Body class for method specification data. More... | |
class | DataModel |
Handle class for model specification data. More... | |
class | DataModelRep |
Body class for model specification data. More... | |
class | DataResponses |
Handle class for responses specification data. More... | |
class | DataResponsesRep |
Body class for responses specification data. More... | |
class | DataTransformModel |
Data transformation specialization of RecastModel. More... | |
class | DataVariables |
Handle class for variables specification data. More... | |
class | DataVariablesRep |
Body class for variables specification data. More... | |
class | DDACEDesignCompExp |
Wrapper class for the DDACE design of experiments library. More... | |
class | DerivInformedPropCovLogitTK |
Dakota transition kernel that updates proposal covariance based on derivatives (for logit random walk case) More... | |
class | DerivInformedPropCovTK |
Dakota transition kernel that updates proposal covariance based on derivatives (for random walk case) More... | |
class | DirectApplicInterface |
Derived application interface class which spawns simulation codes and testers using direct procedure calls. More... | |
class | DiscrepancyCorrection |
Base class for discrepancy corrections. More... | |
class | DLSolverTraits |
A version of TraitsBase specialized for DLSolver. More... | |
class | DOTTraits |
Wrapper class for the DOT optimization library. More... | |
class | EffGlobalMinimizer |
class | EffGlobalTraits |
Implementation of Efficient Global Optimization/Least Squares algorithms. More... | |
class | EmbedHybridMetaIterator |
Meta-iterator for closely-coupled hybrid iteration, typically involving the embedding of local search methods within global search methods. More... | |
class | EnsembleSurrModel |
Derived model class within the surrogate model branch for managing a truth model alongside approximation models of varying fidelity. More... | |
class | Environment |
Base class for the environment class hierarchy. More... | |
class | ExecutableEnvironment |
Environment corresponding to execution as a stand-alone application. More... | |
class | ExperimentData |
Interpolation method for interpolating between experimental and model data. I need to work on inputs/outputs to this method. For now, this assumes interpolation of functional data. More... | |
class | ExperimentResponse |
Container class for response functions and their derivatives. ExperimentResponse provides the body class. More... | |
class | FileReadException |
base class for Dakota file read exceptions (to allow catching both tabular and general file truncation issues) More... | |
class | ForkApplicInterface |
Derived application interface class which spawns simulation codes using fork/execvp/waitpid. More... | |
class | FSUDesignCompExp |
Wrapper class for the FSUDace QMC/CVT library. More... | |
class | FunctionEvalFailure |
exception class for function evaluation failures More... | |
class | GaussProcApproximation |
Derived approximation class for Gaussian Process implementation. More... | |
class | GeneralReader |
Utility used in derived read_core to read in generic format. More... | |
class | GeneralWriter |
Utility used in derived write_core to write in generic format. More... | |
class | GetLongOpt |
GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute, Lyon, France). More... | |
class | Graphics |
The Graphics class provides a single interface to 2D (motif) and 3D (PLPLOT) graphics; there is only one instance of this OutputManager::dakotaGraphics. More... | |
class | GridApplicInterface |
Derived application interface class which spawns simulation codes using grid services such as Condor or Globus. More... | |
class | HDF5IOHelper |
class | HierarchSurrBasedLocalTraits |
Class for multilevel-multifidelity optimization algorithm. More... | |
struct | IntegerScale |
Data structure for storing int-valued dimension scale. More... | |
class | Interface |
Base class for the interface class hierarchy. More... | |
class | Iterator |
Base class for the iterator class hierarchy. More... | |
class | IteratorScheduler |
This class encapsulates scheduling operations for concurrent sub-iteration within an outer level context (e.g., meta-iteration, nested models). More... | |
class | JEGAOptimizer |
A version of Dakota::Optimizer for instantiation of John Eddy's Genetic Algorithms (JEGA). More... | |
class | JEGATraits |
A version of TraitsBase specialized for John Eddy's Genetic Algorithms (JEGA). More... | |
class | LabelsWriter |
Utility used in derived write_core to write labels in tabular format. More... | |
class | LeastSq |
Base class for the nonlinear least squares branch of the iterator hierarchy. More... | |
class | LibraryEnvironment |
Environment corresponding to execution as an embedded library. More... | |
struct | LightWtBaseConstructor |
Dummy struct for overloading constructors used in on-the-fly Model instantiations. More... | |
struct | MatchesWC |
Predicate that returns true when the passed path matches the wild_card with which it was configured. Currently supports * and ?. More... | |
class | MatlabInterface |
class | MetaIterator |
Base class for meta-iterators. More... | |
class | Minimizer |
Base class for the optimizer and least squares branches of the iterator hierarchy. More... | |
class | MinimizerAdapterModel |
Derived model class which wraps call-back functions for solving minimization sub-problems. More... | |
class | MixedVarConstraints |
Derived class within the Constraints hierarchy which separates continuous and discrete variables (no domain type array merging). More... | |
class | MixedVariables |
Derived class within the Variables hierarchy which separates continuous and discrete variables (no domain type array merging). More... | |
class | Model |
Base class for the model class hierarchy. More... | |
class | MPIManager |
Class MPIManager to manage Dakota's MPI world, which may be a subset of MPI_COMM_WORLD. More... | |
class | MPIPackBuffer |
Class for packing MPI message buffers. More... | |
class | MPIUnpackBuffer |
Class for unpacking MPI message buffers. More... | |
class | NCSUOptimizer |
Wrapper class for the NCSU DIRECT optimization library. More... | |
class | NCSUTraits |
A version of TraitsBase specialized for NCSU optimizers. More... | |
class | NestedModel |
Derived model class which performs a complete sub-iterator execution within every evaluation of the model. More... | |
class | NIDRProblemDescDB |
The derived input file database utilizing the new IDR parser. More... | |
struct | NL2Res |
Auxiliary information passed to calcr and calcj via ur. More... | |
class | NL2SOLLeastSq |
Wrapper class for the NL2SOL nonlinear least squares library. More... | |
class | NL2SOLLeastSqTraits |
A version of TraitsBase specialized for NL2SOL nonlinear least squares library. More... | |
class | NLPQLPTraits |
Wrapper class for the NLPQLP optimization library, Version 2.0. More... | |
class | NLSSOLLeastSq |
Wrapper class for the NLSSOL nonlinear least squares library. More... | |
class | NLSSOLLeastSqTraits |
A version of TraitsBase specialized for NLSSOL nonlinear least squares library. More... | |
struct | NoDBBaseConstructor |
Dummy struct for overloading constructors used in on-the-fly instantiations without ProblemDescDB support. More... | |
class | NomadTraits |
Wrapper class for NOMAD Optimizer. More... | |
class | NonD |
Base class for all nondetermistic iterators (the DAKOTA/UQ branch). More... | |
class | NonDACVSampling |
Perform Approximate Control Variate Monte Carlo sampling for UQ. More... | |
class | NonDAdaptImpSampling |
Class for the Adaptive Importance Sampling methods within DAKOTA. More... | |
class | NonDAdaptiveSampling |
Class for testing various Adaptively sampling methods using geometric, statisctical, and topological information of the surrogate. More... | |
class | NonDBayesCalibration |
Base class for Bayesian inference: generates posterior distribution on model parameters given experimental data. More... | |
class | NonDC3FunctionTrain |
Nonintrusive uncertainty quantification with the C3 library ... More... | |
class | NonDCalibration |
class | NonDCubature |
Derived nondeterministic class that generates N-dimensional numerical cubature points for evaluation of expectation integrals. More... | |
class | NonDDREAMBayesCalibration |
Bayesian inference using the DREAM approach. More... | |
class | NonDEnsembleSampling |
Base class for Monte Carlo sampling across Model ensembles. More... | |
class | NonDExpansion |
Base class for polynomial chaos expansions (PCE), stochastic collocation (SC) and functional tensor train (FT) More... | |
class | NonDGenACVSampling |
Perform Generalized Approximate Control Variate Monte Carlo sampling. More... | |
class | NonDGlobalEvidence |
Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ. More... | |
class | NonDGlobalInterval |
Class for using global nongradient-based optimization approaches to calculate interval bounds for epistemic uncertainty quantification. More... | |
class | NonDGlobalReliability |
Class for global reliability methods within DAKOTA/UQ. More... | |
class | NonDGlobalSingleInterval |
Class for using global nongradient-based optimization approaches to calculate interval bounds for epistemic uncertainty quantification. More... | |
class | NonDGPImpSampling |
Class for the Gaussian Process-based Importance Sampling method. More... | |
class | NonDGPMSABayesCalibration |
Generates posterior distribution on model parameters given experiment data. More... | |
class | NonDHierarchSampling |
Performs Hierarch Monte Carlo sampling for uncertainty quantification. More... | |
class | NonDIntegration |
Derived nondeterministic class that generates N-dimensional numerical integration points for evaluation of expectation integrals. More... | |
class | NonDInterval |
Base class for interval-based methods within DAKOTA/UQ. More... | |
class | NonDLHSEvidence |
Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ. More... | |
class | NonDLHSInterval |
Class for the LHS-based interval methods within DAKOTA/UQ. More... | |
class | NonDLHSSampling |
Performs LHS and Monte Carlo sampling for uncertainty quantification. More... | |
class | NonDLHSSingleInterval |
Class for pure interval propagation using LHS. More... | |
class | NonDLocalEvidence |
Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ. More... | |
class | NonDLocalInterval |
Class for using local gradient-based optimization approaches to calculate interval bounds for epistemic uncertainty quantification. More... | |
class | NonDLocalReliability |
Class for the reliability methods within DAKOTA/UQ. More... | |
class | NonDLocalSingleInterval |
Class for using local gradient-based optimization approaches to calculate interval bounds for epistemic uncertainty quantification. More... | |
class | NonDMultifidelitySampling |
Perform Approximate Control Variate Monte Carlo sampling for UQ. More... | |
class | NonDMultilevControlVarSampling |
Performs multilevel-multifidelity Monte Carlo sampling for uncertainty quantification. More... | |
class | NonDMultilevelFunctionTrain |
Nonintrusive polynomial chaos expansion approaches to uncertainty quantification. More... | |
class | NonDMultilevelPolynomialChaos |
Nonintrusive polynomial chaos expansion approaches to uncertainty quantification. More... | |
class | NonDMultilevelSampling |
Performs Multilevel Monte Carlo sampling for uncertainty quantification. More... | |
class | NonDMultilevelStochCollocation |
Nonintrusive stochastic collocation approaches to uncertainty quantification. More... | |
class | NonDMUQBayesCalibration |
Dakota interface to MUQ (MIT Uncertainty Quantification) library. More... | |
class | NonDNonHierarchSampling |
Base class for non-hierarchical ensemble-based Monte Carlo sampling. More... | |
class | NonDPOFDarts |
Base class for POF Dart methods within DAKOTA/UQ. More... | |
class | NonDPolynomialChaos |
Nonintrusive polynomial chaos expansion approaches to uncertainty quantification. More... | |
class | NonDQuadrature |
Derived nondeterministic class that generates N-dimensional numerical quadrature points for evaluation of expectation integrals over uncorrelated standard normals/uniforms/exponentials/betas/gammas. More... | |
class | NonDQUESOBayesCalibration |
Bayesian inference using the QUESO library from UT Austin. More... | |
class | NonDReliability |
Base class for the reliability methods within DAKOTA/UQ. More... | |
class | NonDRKDDarts |
Base class for the Recursive k-d Dart methods within DAKOTA/UQ. More... | |
class | NonDSampling |
Base class for common code between NonDLHSSampling, NonDAdaptImpSampling, and other specializations. More... | |
class | NonDSparseGrid |
Derived nondeterministic class that generates N-dimensional Smolyak sparse grids for numerical evaluation of expectation integrals over independent standard random variables. More... | |
class | NonDStochCollocation |
Nonintrusive stochastic collocation approaches to uncertainty quantification. More... | |
class | NonDSurrogateExpansion |
Generic uncertainty quantification with Model-based stochastic expansions. More... | |
class | NonDWASABIBayesCalibration |
WASABI - Weighted Adaptive Surrogate Approximations for Bayesian Inference. More... | |
class | NonlinearCGOptimizer |
class | NonlinearCGTraits |
A version of TraitsBase specialized for NonlinearCG optimizers. More... | |
class | NOWPACBlackBoxEvaluator |
Derived class for plugging Dakota evaluations into NOWPAC solver. More... | |
class | NOWPACOptimizer |
Wrapper class for the (S)NOWPAC optimization algorithms from Florian Augustin (MIT) More... | |
class | NOWPACTraits |
A version of TraitsBase specialized for NOWPAC optimizers. More... | |
class | NPSOLTraits |
Wrapper class for the NPSOL optimization library. More... | |
class | OptDartsOptimizer |
Wrapper class for OptDarts Optimizer. More... | |
class | OptDartsTraits |
A version of TraitsBase specialized for OptDarts. More... | |
class | Optimizer |
Base class for the optimizer branch of the iterator hierarchy. More... | |
class | OutputManager |
Class to manage redirection of stdout/stderr, keep track of current redir state, and manage rank 0 output. Also manage tabular data output for post-processing with Matlab, Tecplot, etc. and delegate to Graphics for X Windows Graphics. More... | |
class | OutputWriter |
class | ParallelConfiguration |
Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel parallel configuration. More... | |
class | ParallelLevel |
Container class for the data associated with a single level of communicator partitioning. More... | |
class | ParallelLibrary |
Class for partitioning multiple levels of parallelism and managing message passing within these levels. More... | |
class | ParamResponsePair |
Container class for a variables object, a response object, and an evaluation id. More... | |
class | ParamStudy |
Class for vector, list, centered, and multidimensional parameter studies. More... | |
struct | partial_prp_equality |
predicate for comparing ONLY the interfaceId and Vars attributes of PRPair More... | |
struct | partial_prp_hash |
wrapper to delegate to the ParamResponsePair hash_value function More... | |
class | PebbldBranching |
Main Branching class for the PEBBL-based Minimizer. More... | |
class | PebbldBranchSub |
Sub Branch class for the PEBBL-based Minimizer. More... | |
class | PebbldTraits |
Wrapper class for experimental PebbldMinimizer. More... | |
class | PecosApproximation |
Derived approximation class for global basis polynomials. More... | |
class | PrefixingLineFilter |
class | ProbabilityTransformModel |
Probability transformation specialization of RecastModel. More... | |
class | ProblemDescDB |
The database containing information parsed from the DAKOTA input file. More... | |
class | ProcessApplicInterface |
Derived application interface class that spawns a simulation code using a separate process and communicates with it through files. More... | |
class | ProcessHandleApplicInterface |
Derived application interface class that spawns a simulation code using a separate process, receives a process identifier, and communicates with the spawned process through files. More... | |
class | ProgramOptions |
ProgramOptions stores options whether from the CLH or from library user; initially valid only on worldRank = 0, but then broadcast in ParallelLibrary::push_output_tag() More... | |
class | PStudyDACE |
Base class for managing common aspects of parameter studies and design of experiments methods. More... | |
class | PSUADEDesignCompExp |
Wrapper class for the PSUADE library. More... | |
class | Pybind11Interface |
class | PythonInterface |
class | QMEApproximation |
Derived approximation class for QMEA Quadratic Multipoint Exponential Approximation (a multipoint approximation). More... | |
class | QuesoJointPdf |
Dakota specialization of QUESO generic joint PDF. More... | |
class | QuesoVectorRV |
Dakota specialization of QUESO vector-valued random variable. More... | |
class | RandomFieldModel |
Random field model, capable of generating and then forward propagating. More... | |
struct | RealScale |
Data structure for storing real-valued dimension scale. More... | |
class | RecastModel |
Derived model class which provides a thin wrapper around a sub-model in order to recast the form of its inputs and/or outputs. More... | |
class | ReducedBasis |
class | RelaxedVarConstraints |
Derived class within the Constraints hierarchy which employs relaxation of discrete variables. More... | |
class | RelaxedVariables |
Derived class within the Variables hierarchy which employs the relaxation of discrete variables. More... | |
class | Response |
Container class for response functions and their derivatives. Response provides the enveloper base class. More... | |
class | RestartWriter |
struct | ResultAttribute |
Data structure for a single Real, String, or int valued attribute. More... | |
class | ResultsDBAny |
class | ResultsDBBase |
class | ResultsDBHDF5 |
Manage interactions between ResultsManager and the low-level HDFIOHelper class. More... | |
class | ResultsEntry |
Class to manage in-core vs. file database lookups. More... | |
class | ResultsFileError |
exception throw for other results file read error More... | |
class | ResultsManager |
Results manager for iterator final data. More... | |
class | ResultsNames |
List of valid names for iterator results. More... | |
class | RichExtrapVerification |
Class for Richardson extrapolation for code and solution verification. More... | |
class | ROLOptimizer |
class | ROLTraits |
class | ScalingModel |
Scaling specialization of RecastModel. More... | |
class | ScalingOptions |
Simple container for user-provided scaling data, possibly expanded by replicates through the models. More... | |
class | ScilabInterface |
class | SensAnalysisGlobal |
Class for a utility class containing correlation calculations and variance-based decomposition. More... | |
class | SeqHybridMetaIterator |
Method for sequential hybrid iteration using multiple optimization and nonlinear least squares methods on multiple models of varying fidelity. More... | |
class | SharedApproxData |
Base class for the shared approximation data class hierarchy. More... | |
class | SharedC3ApproxData |
Derived approximation class for global basis polynomials. More... | |
class | SharedPecosApproxData |
Derived approximation class for global basis polynomials. More... | |
class | SharedResponseData |
Container class encapsulating variables data that can be shared among a set of Response instances. More... | |
class | SharedResponseDataRep |
The representation of a SharedResponseData instance. This representation, or body, may be shared by multiple SharedResponseData handle instances. More... | |
class | SharedSurfpackApproxData |
Derived approximation class for Surfpack approximation classes. Interface between Surfpack and Dakota. More... | |
class | SharedVariablesData |
Container class encapsulating variables data that can be shared among a set of Variables instances. More... | |
class | SharedVariablesDataRep |
The representation of a SharedVariablesData instance. This representation, or body, may be shared by multiple SharedVariablesData handle instances. More... | |
class | SimulationModel |
Derived model class which utilizes a simulation-based application interface to map variables into responses. More... | |
class | SimulationResponse |
Container class for response functions and their derivatives. SimulationResponse provides the body class. More... | |
class | SNLLBase |
Base class for OPT++ optimization and least squares methods. More... | |
class | SNLLLeastSq |
Wrapper class for the OPT++ optimization library. More... | |
class | SNLLLeastSqTraits |
A version of TraitsBase specialized for SNLLLeastSq. More... | |
class | SNLLOptimizer |
Wrapper class for the OPT++ optimization library. More... | |
class | SNLLTraits |
A version of TraitsBase specialized for SNLL optimizers. More... | |
class | SOLBase |
Base class for Stanford SOL software. More... | |
class | SpawnApplicInterface |
Derived application interface class which spawns simulation codes using spawnvp. More... | |
struct | StringScale |
Data structure for storing string-valued dimension scale. More... | |
class | SubspaceModel |
Subspace model for input (variable space) reduction. More... | |
class | SurfpackApproximation |
Derived approximation class for Surfpack approximation classes. Interface between Surfpack and Dakota. More... | |
class | SurrBasedGlobalMinimizer |
class | SurrBasedGlobalTraits |
The global surrogate-based minimizer which sequentially minimizes and updates a global surrogate model without trust region controls. More... | |
class | SurrBasedLocalMinimizer |
Class for provably-convergent local surrogate-based optimization and nonlinear least squares. More... | |
class | SurrBasedMinimizer |
Base class for local/global surrogate-based optimization/least squares. More... | |
class | SurrogateModel |
Base class for surrogate models (DataFitSurrModel and HierarchSurrModel). More... | |
class | SurrogatesBaseApprox |
Derived Approximation class for new Surrogates modules. More... | |
class | SurrogatesGPApprox |
Derived approximation class for Surrogates approximation classes. More... | |
class | SurrogatesPolyApprox |
Derived approximation class for Surrogates Polynomial approximation classes. More... | |
class | SysCallApplicInterface |
Derived application interface class which spawns simulation codes using system calls. More... | |
class | TabularDataTruncated |
exception thrown when data read truncated More... | |
class | TabularReader |
Utility used in derived read_core to read values in tabular format. More... | |
class | TabularWriter |
Utility used in derived write_core to write values in tabular format. More... | |
class | TANA3Approximation |
Derived approximation class for TANA-3 two-point exponential approximation (a multipoint approximation). More... | |
class | TaylorApproximation |
Derived approximation class for first- or second-order Taylor series (a local approximation). More... | |
class | TestDriverInterface |
class | TKFactoryDIPC |
Custom RW TKfactory: passes Dakota QUESO instance pointer to the TK at build. More... | |
class | TKFactoryDIPCLogit |
Custom Logit RW TKfactory: passed Dakota QUESO instance pointer to the TK at build. More... | |
class | TPLDataTransfer |
class | TrackerHTTP |
TrackerHTTP: a usage tracking module that uses HTTP/HTTPS via the curl library. More... | |
class | TraitsBase |
Base class for traits. More... | |
class | UsageTracker |
Lightweight class to manage conditionally active Curl-based HTTP tracker via PIMPL. More... | |
struct | Var_icheck |
structure for verifying bounds and initial point for string-valued vars More... | |
struct | Var_rcheck |
structure for verifying bounds and initial point for real-valued vars More... | |
class | Variables |
Base class for the variables class hierarchy. More... | |
class | Verification |
Base class for managing common aspects of verification studies. More... | |
struct | VLint |
structure for validating integer uncertain variable labels, bounds, values More... | |
struct | VLreal |
structure for validating real uncertain variable labels, bounds, values More... | |
struct | VLstr |
structure for validating string uncertain variable labels, bounds, values More... | |
class | VPSApproximation |
Derived approximation class for VPS implementation. More... | |
class | WeightingModel |
Weighting specialization of RecastModel. More... | |
class | WorkdirHelper |
Typedefs | |
typedef boost::tuple< std::string, std::string, size_t, std::string > | ResultsKeyType |
Data type for results key (instance name / id, unique run, label), where data_key is a valid colon-delimited string from ResultsNames tuple<method_name, method_id, execution_number, data_key> | |
typedef std::string | MetaDataKeyType |
Data type for metadata key. | |
typedef std::vector< std::string > | MetaDataValueType |
Data type for metadata value. | |
typedef std::map< MetaDataKeyType, MetaDataValueType > | MetaDataType |
A single MetaData entry is map<string, vector<string> > Example: pair( "Column labels", ["Mean", "Std Dev", "Skewness", "Kurtosis"] ) | |
typedef boost::tuple< std::string, std::string, size_t > | StrStrSizet |
Iterator unique ID: <method_name, method_id, exec_num> | |
typedef std::multimap< int, boost::variant< StringScale, RealScale, IntegerScale > > | DimScaleMap |
Datatype to communicate scales (stored in boost::variant) and their associated dimension (the int) to the ResultsManager instance. | |
typedef std::vector< boost::variant< ResultAttribute< int >, ResultAttribute< String >, ResultAttribute< Real > > > | AttributeArray |
Datatype to communcate metadata (attributes) to the ResultsManager instance. | |
typedef boost::bimap< unsigned short, std::string > | UShortStrBimap |
bimaps to convert from enums <--> strings | |
using | RespMetadataT = double |
typedef void(* | dl_core_run_t) (void *, Optimizer1 *, char *) |
typedef void(* | dl_destructor_t) (void **) |
typedef Teuchos::SerialDenseSolver< int, Real > | RealSolver |
typedef Teuchos::SerialSpdDenseSolver< int, Real > | RealSpdSolver |
typedef int(* | start_grid_computing_t) (char *analysis_driver_script, char *params_file, char *results_file) |
definition of start grid computing type (function pointer) | |
typedef int(* | perform_analysis_t) (char *iteration_num) |
definition of perform analysis type (function pointer) | |
typedef int *(* | get_jobs_completed_t) () |
definition of get completed jobs type (function pointer) | |
typedef int(* | stop_grid_computing_t) () |
definition of stop grid computing type (function pointer) | |
typedef int | MPI_Comm |
typedef void * | MPI_Request |
typedef unsigned char | u_char |
typedef unsigned short | u_short |
typedef unsigned int | u_int |
typedef unsigned long | u_long |
typedef long long | long_long |
typedef unsigned long | UL |
typedef void(* | Calcrj) (int *n, int *p, Real *x, int *nf, Real *r, int *ui, void *ur, Vf vf) |
typedef void(* | Vf) () |
typedef void(* | DbCallbackFunctionPtr) (Dakota::ProblemDescDB *db, void *data_ptr) |
typedef boost::tuple< bfs::path, bfs::path, bfs::path > | PathTriple |
Triplet of filesystem paths: e.g., params, results, workdir. | |
typedef bmi::multi_index_container< Dakota::ParamResponsePair, bmi::indexed_by< bmi::ordered_non_unique< bmi::tag< ordered >, bmi::const_mem_fun< Dakota::ParamResponsePair, const IntStringPair &, &Dakota::ParamResponsePair::eval_interface_ids > >, bmi::hashed_non_unique< bmi::tag< hashed >, bmi::identity< Dakota::ParamResponsePair >, partial_prp_hash, partial_prp_equality > > > | PRPMultiIndexCache |
Boost Multi-Index Container for globally caching ParamResponsePairs. More... | |
typedef PRPMultiIndexCache | PRPCache |
typedef PRPCache::index_iterator< ordered >::type | PRPCacheOIter |
typedef PRPCache::index_const_iterator< ordered >::type | PRPCacheOCIter |
typedef PRPCache::index_iterator< hashed >::type | PRPCacheHIter |
typedef PRPCache::index_const_iterator< hashed >::type | PRPCacheHCIter |
typedef PRPCacheOIter | PRPCacheIter |
default cache iterator <0> | |
typedef PRPCacheOCIter | PRPCacheCIter |
default cache const iterator <0> default cache const reverse iterator <0> | |
typedef boost::reverse_iterator< PRPCacheCIter > | PRPCacheCRevIter |
typedef bmi::multi_index_container< Dakota::ParamResponsePair, bmi::indexed_by< bmi::ordered_unique< bmi::tag< ordered >, bmi::const_mem_fun< Dakota::ParamResponsePair, int, &Dakota::ParamResponsePair::eval_id > >, bmi::hashed_non_unique< bmi::tag< hashed >, bmi::identity< Dakota::ParamResponsePair >, partial_prp_hash, partial_prp_equality > > > | PRPMultiIndexQueue |
Boost Multi-Index Container for locally queueing ParamResponsePairs. More... | |
typedef PRPMultiIndexQueue | PRPQueue |
typedef PRPQueue::index_iterator< ordered >::type | PRPQueueOIter |
typedef PRPQueue::index_const_iterator< ordered >::type | PRPQueueOCIter |
typedef PRPQueue::index_iterator< hashed >::type | PRPQueueHIter |
typedef PRPQueue::index_const_iterator< hashed >::type | PRPQueueHCIter |
typedef PRPQueueOIter | PRPQueueIter |
typedef PRPQueueOCIter | PRPQueueCIter |
typedef std::pair< boost::any, MetaDataType > | ResultsValueType |
Core data storage type: boost::any, with optional metadata (see other types in results_types.hpp) | |
typedef boost::function< bool(const bfs::path &src_path, const bfs::path &dest_path, bool overwrite)> | file_op_function |
define a function type that operates from src to dest, with option to overwrite | |
typedef boost::filter_iterator< MatchesWC, bfs::directory_iterator > | glob_iterator |
a glob_iterator filters a directory_iterator based on a wildcard predicate | |
Enumerations | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum for Dakota abort reasons; using negative numbers to distinguish Dakota exit states from signals / uncaught signals. These need to be in range [-63, -1], so exit code (256+enum) is in [193, 255]. See RATIONALE in dakota_global_defs.cpp. | |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
enum for selecting the models that store evaluations More... | |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
enum for selecting the interfaces that store evaluations | |
enum | { ABORT_EXITS, ABORT_THROWS, NO_MODEL_SELECTION =0, ALL_MODEL_COMBINATIONS, RF_KARHUNEN_LOEVE =0, RF_PCA_GP, RF_ICA, ALL_VARS =0, ACTIVE_VARS, INACTIVE_VARS, DAURVar_histogram_point_real = 0, DAURVar_Nkinds = 1 } |
enum for dakota abort behaviors | |
enum | { CV_ID_DEFAULT = 0, MINIMUM_METRIC, RELATIVE_TOLERANCE, DECREASE_TOLERANCE, SILENT_OUTPUT, QUIET_OUTPUT, NORMAL_OUTPUT, VERBOSE_OUTPUT, DEBUG_OUTPUT, NOCOVAR =0, EXP_L2, EXP_L1, EMPTY_TYPE =0, CONTINUOUS_DESIGN, DISCRETE_DESIGN_RANGE, DISCRETE_DESIGN_SET_INT, DISCRETE_DESIGN_SET_STRING, DISCRETE_DESIGN_SET_REAL, NORMAL_UNCERTAIN, LOGNORMAL_UNCERTAIN, UNIFORM_UNCERTAIN, LOGUNIFORM_UNCERTAIN, TRIANGULAR_UNCERTAIN, EXPONENTIAL_UNCERTAIN, BETA_UNCERTAIN, GAMMA_UNCERTAIN, GUMBEL_UNCERTAIN, FRECHET_UNCERTAIN, WEIBULL_UNCERTAIN, HISTOGRAM_BIN_UNCERTAIN, POISSON_UNCERTAIN, BINOMIAL_UNCERTAIN, NEGATIVE_BINOMIAL_UNCERTAIN, GEOMETRIC_UNCERTAIN, HYPERGEOMETRIC_UNCERTAIN, HISTOGRAM_POINT_UNCERTAIN_INT, HISTOGRAM_POINT_UNCERTAIN_STRING, HISTOGRAM_POINT_UNCERTAIN_REAL, CONTINUOUS_INTERVAL_UNCERTAIN, DISCRETE_INTERVAL_UNCERTAIN, DISCRETE_UNCERTAIN_SET_INT, DISCRETE_UNCERTAIN_SET_STRING, DISCRETE_UNCERTAIN_SET_REAL, CONTINUOUS_STATE, DISCRETE_STATE_RANGE, DISCRETE_STATE_SET_INT, DISCRETE_STATE_SET_STRING, DISCRETE_STATE_SET_REAL, CEUVar_interval = 0, CEUVar_Nkinds = 1 } |
enum for active subspace cross validation identification | |
enum | { TABULAR_NONE = 0, TABULAR_HEADER = 1, TABULAR_EVAL_ID = 2, TABULAR_IFACE_ID = 4, TABULAR_EXPER_ANNOT = TABULAR_HEADER | TABULAR_EVAL_ID, TABULAR_ANNOTATED = TABULAR_HEADER | TABULAR_EVAL_ID | TABULAR_IFACE_ID, NO_RESULTS =0, REFINEMENT_RESULTS, INTERMEDIATE_RESULTS, FINAL_RESULTS, SUBSPACE_NORM_DEFAULT =0, SUBSPACE_NORM_MEAN_VALUE, SUBSPACE_NORM_MEAN_GRAD, SUBSPACE_NORM_LOCAL_GRAD, TOTAL_CDV =0, TOTAL_DDIV, TOTAL_DDSV, TOTAL_DDRV, TOTAL_CAUV, TOTAL_DAUIV, TOTAL_DAUSV, TOTAL_DAURV, TOTAL_CEUV, TOTAL_DEUIV, TOTAL_DEUSV, TOTAL_DEURV, TOTAL_CSV, TOTAL_DSIV, TOTAL_DSSV, TOTAL_DSRV, NUM_VC_TOTALS, DEUIVar_interval = 0, DEUIVar_set_int = 1, DEUIVar_Nkinds = 2 } |
options for tabular columns | |
enum | { RESULTS_OUTPUT_TEXT = 1, RESULTS_OUTPUT_HDF5 = 2, DEFAULT_SYNCHRONIZATION =0, BLOCKING_SYNCHRONIZATION, NONBLOCKING_SYNCHRONIZATION, ROTATION_METHOD_UNRANKED, ROTATION_METHOD_RANKED, DEUSVar_set_str = 0, DEUSVar_Nkinds = 1 } |
Results output format. | |
enum | { FLEXIBLE_RESULTS, LABELED_RESULTS, DEFAULT_SCHEDULING, MASTER_SCHEDULING, PEER_SCHEDULING, PEER_DYNAMIC_SCHEDULING, PEER_STATIC_SCHEDULING, DYNAMIC_SCHEDULING, STATIC_SCHEDULING, NO_PARALLEL_MODE =0, SURROGATE_MODEL_MODE, TRUTH_MODEL_MODE, SUB_MODEL_MODE, INTERFACE_MODE, DEURVar_set_real = 0, DEURVar_Nkinds = 1 } |
options for results file format | |
enum | { NO_MODEL_FORMAT =0, TEXT_ARCHIVE =1, BINARY_ARCHIVE =2, ALGEBRAIC_FILE =4, ALGEBRAIC_CONSOLE =8, DEFAULT_CONFIG, PUSH_DOWN, PUSH_UP, NO_DERIVS =0, ALL_DERIVS, MIXED_DERIVS, DiscSetVar_design_set_int = 0, DiscSetVar_design_set_str = 1, DiscSetVar_design_set_real = 2, DiscSetVar_state_set_int = 3, DiscSetVar_state_set_str = 4, DiscSetVar_state_set_real = 5, DiscSetVar_Nkinds = 6 } |
define special values for surrogateExportFormats | |
enum | ScaleScope { SHARED, UNSHARED } |
Enum to specify whether a scale shared among responses. | |
enum | ResultsOutputType { REAL, INTEGER, UINTEGER, STRING } |
enum for setting type on allocted matrix for Results Output | |
enum | CONSTRAINT_TYPE { LINEAR, NONLINEAR } |
enum | CONSTRAINT_EQUALITY_TYPE { EQUALITY, INEQUALITY } |
enum | LINEAR_INEQUALITY_FORMAT { NONE, TWO_SIDED, ONE_SIDED_LOWER, ONE_SIDED_UPPER } |
enum | NONLINEAR_EQUALITY_FORMAT { NONE, TRUE_EQUALITY, TWO_INEQUALITY } |
enum | NONLINEAR_INEQUALITY_FORMAT { NONE, ONE_SIDED_UPPER, ONE_SIDED_LOWER, TWO_SIDED } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
special values for interface type | |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
interface synchronization types More... | |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
define algebraic function types | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
Sub-methods, including sampling, inference algorithm, opt algorithm types. More... | |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
Graph recursion options for generalized ACV. | |
enum | { ABORT_EXITS, ABORT_THROWS, NO_MODEL_SELECTION =0, ALL_MODEL_COMBINATIONS, RF_KARHUNEN_LOEVE =0, RF_PCA_GP, RF_ICA, ALL_VARS =0, ACTIVE_VARS, INACTIVE_VARS, DAURVar_histogram_point_real = 0, DAURVar_Nkinds = 1 } |
Model selection options for generalized ACV. | |
enum | { CV_ID_DEFAULT = 0, MINIMUM_METRIC, RELATIVE_TOLERANCE, DECREASE_TOLERANCE, SILENT_OUTPUT, QUIET_OUTPUT, NORMAL_OUTPUT, VERBOSE_OUTPUT, DEBUG_OUTPUT, NOCOVAR =0, EXP_L2, EXP_L1, EMPTY_TYPE =0, CONTINUOUS_DESIGN, DISCRETE_DESIGN_RANGE, DISCRETE_DESIGN_SET_INT, DISCRETE_DESIGN_SET_STRING, DISCRETE_DESIGN_SET_REAL, NORMAL_UNCERTAIN, LOGNORMAL_UNCERTAIN, UNIFORM_UNCERTAIN, LOGUNIFORM_UNCERTAIN, TRIANGULAR_UNCERTAIN, EXPONENTIAL_UNCERTAIN, BETA_UNCERTAIN, GAMMA_UNCERTAIN, GUMBEL_UNCERTAIN, FRECHET_UNCERTAIN, WEIBULL_UNCERTAIN, HISTOGRAM_BIN_UNCERTAIN, POISSON_UNCERTAIN, BINOMIAL_UNCERTAIN, NEGATIVE_BINOMIAL_UNCERTAIN, GEOMETRIC_UNCERTAIN, HYPERGEOMETRIC_UNCERTAIN, HISTOGRAM_POINT_UNCERTAIN_INT, HISTOGRAM_POINT_UNCERTAIN_STRING, HISTOGRAM_POINT_UNCERTAIN_REAL, CONTINUOUS_INTERVAL_UNCERTAIN, DISCRETE_INTERVAL_UNCERTAIN, DISCRETE_UNCERTAIN_SET_INT, DISCRETE_UNCERTAIN_SET_STRING, DISCRETE_UNCERTAIN_SET_REAL, CONTINUOUS_STATE, DISCRETE_STATE_RANGE, DISCRETE_STATE_SET_INT, DISCRETE_STATE_SET_STRING, DISCRETE_STATE_SET_REAL, CEUVar_interval = 0, CEUVar_Nkinds = 1 } |
enum | { TABULAR_NONE = 0, TABULAR_HEADER = 1, TABULAR_EVAL_ID = 2, TABULAR_IFACE_ID = 4, TABULAR_EXPER_ANNOT = TABULAR_HEADER | TABULAR_EVAL_ID, TABULAR_ANNOTATED = TABULAR_HEADER | TABULAR_EVAL_ID | TABULAR_IFACE_ID, NO_RESULTS =0, REFINEMENT_RESULTS, INTERMEDIATE_RESULTS, FINAL_RESULTS, SUBSPACE_NORM_DEFAULT =0, SUBSPACE_NORM_MEAN_VALUE, SUBSPACE_NORM_MEAN_GRAD, SUBSPACE_NORM_LOCAL_GRAD, TOTAL_CDV =0, TOTAL_DDIV, TOTAL_DDSV, TOTAL_DDRV, TOTAL_CAUV, TOTAL_DAUIV, TOTAL_DAUSV, TOTAL_DAURV, TOTAL_CEUV, TOTAL_DEUIV, TOTAL_DEUSV, TOTAL_DEURV, TOTAL_CSV, TOTAL_DSIV, TOTAL_DSSV, TOTAL_DSRV, NUM_VC_TOTALS, DEUIVar_interval = 0, DEUIVar_set_int = 1, DEUIVar_Nkinds = 2 } |
enum | { RESULTS_OUTPUT_TEXT = 1, RESULTS_OUTPUT_HDF5 = 2, DEFAULT_SYNCHRONIZATION =0, BLOCKING_SYNCHRONIZATION, NONBLOCKING_SYNCHRONIZATION, ROTATION_METHOD_UNRANKED, ROTATION_METHOD_RANKED, DEUSVar_set_str = 0, DEUSVar_Nkinds = 1 } |
enum | { FLEXIBLE_RESULTS, LABELED_RESULTS, DEFAULT_SCHEDULING, MASTER_SCHEDULING, PEER_SCHEDULING, PEER_DYNAMIC_SCHEDULING, PEER_STATIC_SCHEDULING, DYNAMIC_SCHEDULING, STATIC_SCHEDULING, NO_PARALLEL_MODE =0, SURROGATE_MODEL_MODE, TRUTH_MODEL_MODE, SUB_MODEL_MODE, INTERFACE_MODE, DEURVar_set_real = 0, DEURVar_Nkinds = 1 } |
enum | { NO_MODEL_FORMAT =0, TEXT_ARCHIVE =1, BINARY_ARCHIVE =2, ALGEBRAIC_FILE =4, ALGEBRAIC_CONSOLE =8, DEFAULT_CONFIG, PUSH_DOWN, PUSH_UP, NO_DERIVS =0, ALL_DERIVS, MIXED_DERIVS, DiscSetVar_design_set_int = 0, DiscSetVar_design_set_str = 1, DiscSetVar_design_set_real = 2, DiscSetVar_state_set_int = 3, DiscSetVar_state_set_str = 4, DiscSetVar_state_set_real = 5, DiscSetVar_Nkinds = 6 } |
enum | { STD_NORMAL_U, STD_UNIFORM_U, PARTIAL_ASKEY_U, ASKEY_U, EXTENDED_U, FT_LS, FT_RLS2, NUM_UNC_REAL_CONT = 4 } |
enum | { DEFAULT_COVARIANCE, NO_COVARIANCE, DIAGONAL_COVARIANCE, FULL_COVARIANCE, NO_C3_ADVANCEMENT =0, START_RANK_ADVANCEMENT, START_ORDER_ADVANCEMENT, MAX_RANK_ADVANCEMENT, MAX_ORDER_ADVANCEMENT, MAX_RANK_ORDER_ADVANCEMENT, NUM_UNC_INT_CONT = 2 } |
enum | { NO_INT_REFINE =0, IS, AIS, MMAIS, NUM_UNC_STR_CONT = 2 } |
enum | { PROBABILITIES, RELIABILITIES, GEN_RELIABILITIES } |
enum | { COMPONENT =0, SYSTEM_SERIES, SYSTEM_PARALLEL } |
enum | { CUMULATIVE, COMPLEMENTARY } |
enum | { DEFAULT_LS =0, SVD_LS, EQ_CON_LS } |
enum | { DEFAULT_MLMF_CONTROL =0, ESTIMATOR_VARIANCE, RIP_SAMPLING, RANK_SAMPLING, GREEDY_REFINEMENT } |
enum | { DEFAULT_EMULATION, DISTINCT_EMULATION, RECURSIVE_EMULATION } |
enum | { NO_EMULATOR, PCE_EMULATOR, ML_PCE_EMULATOR, MF_PCE_EMULATOR, SC_EMULATOR, MF_SC_EMULATOR, GP_EMULATOR, KRIGING_EMULATOR, EXPGP_EMULATOR, VPS_EMULATOR } |
enum | { CALIBRATE_NONE = 0, CALIBRATE_ONE, CALIBRATE_PER_EXPER, CALIBRATE_PER_RESP, CALIBRATE_BOTH } |
enum | { IGNORE_RANKS, SET_RANKS, GET_RANKS, SET_GET_RANKS } |
enum | { DESIGN, UNCERTAIN, UNCERTAIN_UNIFORM, ALEATORY_UNCERTAIN, ALEATORY_UNCERTAIN_UNIFORM, EPISTEMIC_UNCERTAIN, EPISTEMIC_UNCERTAIN_UNIFORM, STATE, ACTIVE, ACTIVE_UNIFORM, ALL, ALL_UNIFORM } |
enum | { ONE_SIDED_LOWER, ONE_SIDED_UPPER, NONE, TWO_SIDED, ONE_SIDED_LOWER, ONE_SIDED_UPPER, TWO_SIDED, NONE, ONE_SIDED_UPPER, ONE_SIDED_LOWER, TWO_SIDED } |
enum | { NO_FINAL_STATS =0, QOI_STATISTICS, ESTIMATOR_PERFORMANCE } |
enum | { QOI_AGGREGATION_MAX, QOI_AGGREGATION_SUM } |
enum | { TARGET_MEAN, TARGET_VARIANCE, TARGET_SIGMA, TARGET_SCALARIZATION } |
enum | { CONVERGENCE_TOLERANCE_TYPE_RELATIVE, CONVERGENCE_TOLERANCE_TYPE_ABSOLUTE } |
enum | { CONVERGENCE_TOLERANCE_TARGET_VARIANCE_CONSTRAINT, CONVERGENCE_TOLERANCE_TARGET_COST_CONSTRAINT } |
enum | { ONLINE_PILOT, OFFLINE_PILOT, PILOT_PROJECTION } |
enum | { REORDERED_FALLBACK, NUMERICAL_FALLBACK, NUMERICAL_OVERRIDE } |
enum | { BREITUNG, HOHENRACK, HONG } |
enum | { ORIGINAL_PRIMARY, SINGLE_OBJECTIVE, LAGRANGIAN_OBJECTIVE, AUGMENTED_LAGRANGIAN_OBJECTIVE } |
enum | { NO_CONSTRAINTS, LINEARIZED_CONSTRAINTS, ORIGINAL_CONSTRAINTS } |
enum | { NO_RELAX, HOMOTOPY, COMPOSITE_STEP } |
enum | { PENALTY_MERIT, ADAPTIVE_PENALTY_MERIT, LAGRANGIAN_MERIT, AUGMENTED_LAGRANGIAN_MERIT } |
enum | { FILTER, TR_RATIO } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
define special values for pointsManagement | |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
define special values for SurrogateModel::responseMode More... | |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
define special values for approxCorrectionType | |
enum | { ABORT_EXITS, ABORT_THROWS, NO_MODEL_SELECTION =0, ALL_MODEL_COMBINATIONS, RF_KARHUNEN_LOEVE =0, RF_PCA_GP, RF_ICA, ALL_VARS =0, ACTIVE_VARS, INACTIVE_VARS, DAURVar_histogram_point_real = 0, DAURVar_Nkinds = 1 } |
define types of random field approximations | |
enum | { CV_ID_DEFAULT = 0, MINIMUM_METRIC, RELATIVE_TOLERANCE, DECREASE_TOLERANCE, SILENT_OUTPUT, QUIET_OUTPUT, NORMAL_OUTPUT, VERBOSE_OUTPUT, DEBUG_OUTPUT, NOCOVAR =0, EXP_L2, EXP_L1, EMPTY_TYPE =0, CONTINUOUS_DESIGN, DISCRETE_DESIGN_RANGE, DISCRETE_DESIGN_SET_INT, DISCRETE_DESIGN_SET_STRING, DISCRETE_DESIGN_SET_REAL, NORMAL_UNCERTAIN, LOGNORMAL_UNCERTAIN, UNIFORM_UNCERTAIN, LOGUNIFORM_UNCERTAIN, TRIANGULAR_UNCERTAIN, EXPONENTIAL_UNCERTAIN, BETA_UNCERTAIN, GAMMA_UNCERTAIN, GUMBEL_UNCERTAIN, FRECHET_UNCERTAIN, WEIBULL_UNCERTAIN, HISTOGRAM_BIN_UNCERTAIN, POISSON_UNCERTAIN, BINOMIAL_UNCERTAIN, NEGATIVE_BINOMIAL_UNCERTAIN, GEOMETRIC_UNCERTAIN, HYPERGEOMETRIC_UNCERTAIN, HISTOGRAM_POINT_UNCERTAIN_INT, HISTOGRAM_POINT_UNCERTAIN_STRING, HISTOGRAM_POINT_UNCERTAIN_REAL, CONTINUOUS_INTERVAL_UNCERTAIN, DISCRETE_INTERVAL_UNCERTAIN, DISCRETE_UNCERTAIN_SET_INT, DISCRETE_UNCERTAIN_SET_STRING, DISCRETE_UNCERTAIN_SET_REAL, CONTINUOUS_STATE, DISCRETE_STATE_RANGE, DISCRETE_STATE_SET_INT, DISCRETE_STATE_SET_STRING, DISCRETE_STATE_SET_REAL, CEUVar_interval = 0, CEUVar_Nkinds = 1 } |
define types of analytic covariance functions | |
enum | { TABULAR_NONE = 0, TABULAR_HEADER = 1, TABULAR_EVAL_ID = 2, TABULAR_IFACE_ID = 4, TABULAR_EXPER_ANNOT = TABULAR_HEADER | TABULAR_EVAL_ID, TABULAR_ANNOTATED = TABULAR_HEADER | TABULAR_EVAL_ID | TABULAR_IFACE_ID, NO_RESULTS =0, REFINEMENT_RESULTS, INTERMEDIATE_RESULTS, FINAL_RESULTS, SUBSPACE_NORM_DEFAULT =0, SUBSPACE_NORM_MEAN_VALUE, SUBSPACE_NORM_MEAN_GRAD, SUBSPACE_NORM_LOCAL_GRAD, TOTAL_CDV =0, TOTAL_DDIV, TOTAL_DDSV, TOTAL_DDRV, TOTAL_CAUV, TOTAL_DAUIV, TOTAL_DAUSV, TOTAL_DAURV, TOTAL_CEUV, TOTAL_DEUIV, TOTAL_DEUSV, TOTAL_DEURV, TOTAL_CSV, TOTAL_DSIV, TOTAL_DSSV, TOTAL_DSRV, NUM_VC_TOTALS, DEUIVar_interval = 0, DEUIVar_set_int = 1, DEUIVar_Nkinds = 2 } |
define special values for active subspace normalizations | |
enum | { RESULTS_OUTPUT_TEXT = 1, RESULTS_OUTPUT_HDF5 = 2, DEFAULT_SYNCHRONIZATION =0, BLOCKING_SYNCHRONIZATION, NONBLOCKING_SYNCHRONIZATION, ROTATION_METHOD_UNRANKED, ROTATION_METHOD_RANKED, DEUSVar_set_str = 0, DEUSVar_Nkinds = 1 } |
enum | { FLEXIBLE_RESULTS, LABELED_RESULTS, DEFAULT_SCHEDULING, MASTER_SCHEDULING, PEER_SCHEDULING, PEER_DYNAMIC_SCHEDULING, PEER_STATIC_SCHEDULING, DYNAMIC_SCHEDULING, STATIC_SCHEDULING, NO_PARALLEL_MODE =0, SURROGATE_MODEL_MODE, TRUTH_MODEL_MODE, SUB_MODEL_MODE, INTERFACE_MODE, DEURVar_set_real = 0, DEURVar_Nkinds = 1 } |
define special values for componentParallelMode (active model for parallel scheduling) | |
enum | { NO_MODEL_FORMAT =0, TEXT_ARCHIVE =1, BINARY_ARCHIVE =2, ALGEBRAIC_FILE =4, ALGEBRAIC_CONSOLE =8, DEFAULT_CONFIG, PUSH_DOWN, PUSH_UP, NO_DERIVS =0, ALL_DERIVS, MIXED_DERIVS, DiscSetVar_design_set_int = 0, DiscSetVar_design_set_str = 1, DiscSetVar_design_set_real = 2, DiscSetVar_state_set_int = 3, DiscSetVar_state_set_str = 4, DiscSetVar_state_set_real = 5, DiscSetVar_Nkinds = 6 } |
define special values for distParamDerivs | |
enum | { STD_NORMAL_U, STD_UNIFORM_U, PARTIAL_ASKEY_U, ASKEY_U, EXTENDED_U, FT_LS, FT_RLS2, NUM_UNC_REAL_CONT = 4 } |
enum | { DEFAULT_COVARIANCE, NO_COVARIANCE, DIAGONAL_COVARIANCE, FULL_COVARIANCE, NO_C3_ADVANCEMENT =0, START_RANK_ADVANCEMENT, START_ORDER_ADVANCEMENT, MAX_RANK_ADVANCEMENT, MAX_ORDER_ADVANCEMENT, MAX_RANK_ORDER_ADVANCEMENT, NUM_UNC_INT_CONT = 2 } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
special values for derived Response type | |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
values for primary response types More... | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
enum | { ABORT_EXITS, ABORT_THROWS, NO_MODEL_SELECTION =0, ALL_MODEL_COMBINATIONS, RF_KARHUNEN_LOEVE =0, RF_PCA_GP, RF_ICA, ALL_VARS =0, ACTIVE_VARS, INACTIVE_VARS, DAURVar_histogram_point_real = 0, DAURVar_Nkinds = 1 } |
values differentiating subsets of variables for I/O | |
enum | { CV_ID_DEFAULT = 0, MINIMUM_METRIC, RELATIVE_TOLERANCE, DECREASE_TOLERANCE, SILENT_OUTPUT, QUIET_OUTPUT, NORMAL_OUTPUT, VERBOSE_OUTPUT, DEBUG_OUTPUT, NOCOVAR =0, EXP_L2, EXP_L1, EMPTY_TYPE =0, CONTINUOUS_DESIGN, DISCRETE_DESIGN_RANGE, DISCRETE_DESIGN_SET_INT, DISCRETE_DESIGN_SET_STRING, DISCRETE_DESIGN_SET_REAL, NORMAL_UNCERTAIN, LOGNORMAL_UNCERTAIN, UNIFORM_UNCERTAIN, LOGUNIFORM_UNCERTAIN, TRIANGULAR_UNCERTAIN, EXPONENTIAL_UNCERTAIN, BETA_UNCERTAIN, GAMMA_UNCERTAIN, GUMBEL_UNCERTAIN, FRECHET_UNCERTAIN, WEIBULL_UNCERTAIN, HISTOGRAM_BIN_UNCERTAIN, POISSON_UNCERTAIN, BINOMIAL_UNCERTAIN, NEGATIVE_BINOMIAL_UNCERTAIN, GEOMETRIC_UNCERTAIN, HYPERGEOMETRIC_UNCERTAIN, HISTOGRAM_POINT_UNCERTAIN_INT, HISTOGRAM_POINT_UNCERTAIN_STRING, HISTOGRAM_POINT_UNCERTAIN_REAL, CONTINUOUS_INTERVAL_UNCERTAIN, DISCRETE_INTERVAL_UNCERTAIN, DISCRETE_UNCERTAIN_SET_INT, DISCRETE_UNCERTAIN_SET_STRING, DISCRETE_UNCERTAIN_SET_REAL, CONTINUOUS_STATE, DISCRETE_STATE_RANGE, DISCRETE_STATE_SET_INT, DISCRETE_STATE_SET_STRING, DISCRETE_STATE_SET_REAL, CEUVar_interval = 0, CEUVar_Nkinds = 1 } |
enum | { TABULAR_NONE = 0, TABULAR_HEADER = 1, TABULAR_EVAL_ID = 2, TABULAR_IFACE_ID = 4, TABULAR_EXPER_ANNOT = TABULAR_HEADER | TABULAR_EVAL_ID, TABULAR_ANNOTATED = TABULAR_HEADER | TABULAR_EVAL_ID | TABULAR_IFACE_ID, NO_RESULTS =0, REFINEMENT_RESULTS, INTERMEDIATE_RESULTS, FINAL_RESULTS, SUBSPACE_NORM_DEFAULT =0, SUBSPACE_NORM_MEAN_VALUE, SUBSPACE_NORM_MEAN_GRAD, SUBSPACE_NORM_LOCAL_GRAD, TOTAL_CDV =0, TOTAL_DDIV, TOTAL_DDSV, TOTAL_DDRV, TOTAL_CAUV, TOTAL_DAUIV, TOTAL_DAUSV, TOTAL_DAURV, TOTAL_CEUV, TOTAL_DEUIV, TOTAL_DEUSV, TOTAL_DEURV, TOTAL_CSV, TOTAL_DSIV, TOTAL_DSSV, TOTAL_DSRV, NUM_VC_TOTALS, DEUIVar_interval = 0, DEUIVar_set_int = 1, DEUIVar_Nkinds = 2 } |
enum | var_t { VAR_x1, VAR_x2, VAR_x3, VAR_b, VAR_h, VAR_P, VAR_M, VAR_Y, VAR_w, VAR_t, VAR_R, VAR_E, VAR_X, VAR_area_type, VAR_Fs, VAR_P1, VAR_P2, VAR_P3, VAR_B, VAR_D, VAR_H, VAR_F0, VAR_d, VAR_MForm, VAR_x, VAR_xi, VAR_Af, VAR_Ac, VAR_y, VAR_theta, VAR_theta1, VAR_theta2, VAR_delta, VAR_gamma } |
enumeration of possible variable types (to index to names) | |
enum | driver_t { NO_DRIVER =0, CANTILEVER_BEAM, MOD_CANTILEVER_BEAM, CANTILEVER_BEAM_ML, CYLINDER_HEAD, EXTENDED_ROSENBROCK, GENERALIZED_ROSENBROCK, LF_ROSENBROCK, EXTRA_LF_ROSENBROCK, MF_ROSENBROCK, MODIFIED_ROSENBROCK, ROSENBROCK, LF_POLY_PROD, POLY_PROD, GERSTNER, SCALABLE_GERSTNER, LOGNORMAL_RATIO, MULTIMODAL, PLUGIN_ROSENBROCK, PLUGIN_TEXT_BOOK, SHORT_COLUMN, LF_SHORT_COLUMN, MF_SHORT_COLUMN, SIDE_IMPACT_COST, SIDE_IMPACT_PERFORMANCE, SOBOL_RATIONAL, SOBOL_G_FUNCTION, SOBOL_ISHIGAMI, STEEL_COLUMN_COST, STEEL_COLUMN_PERFORMANCE, TEXT_BOOK, TEXT_BOOK1, TEXT_BOOK2, TEXT_BOOK3, TEXT_BOOK_OUU, SCALABLE_TEXT_BOOK, SCALABLE_MONOMIALS, MOGATEST1, MOGATEST2, MOGATEST3, ILLUMINATION, BARNES, BARNES_LF, HERBIE, SMOOTH_HERBIE, SHUBERT, SALINAS, MODELCENTER, GENZ, DAMPED_OSCILLATOR, ANISOTROPIC_QUADRATIC_FORM, BAYES_LINEAR, STEADY_STATE_DIFFUSION_1D, SS_DIFFUSION_DISCREPANCY, TRANSIENT_DIFFUSION_1D, PREDATOR_PREY, PROBLEM18, TUNABLE_MODEL } |
enumeration of possible direct driver types (to index to names) | |
enum | local_data_t { VARIABLES_MAP =1, VARIABLES_VECTOR =2 } |
enumeration for how local variables are stored (values must employ a bit representation) | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | sigtype { NO_SIGMA, SCALAR_SIGMA, DIAGONAL_SIGMA, MATRIX_SIGMA } |
special values for sigmaType | |
enum | edtype { SCALAR_DATA, FUNCTIONAL_DATA } |
special values for experimental data type | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
enum | { ABORT_EXITS, ABORT_THROWS, NO_MODEL_SELECTION =0, ALL_MODEL_COMBINATIONS, RF_KARHUNEN_LOEVE =0, RF_PCA_GP, RF_ICA, ALL_VARS =0, ACTIVE_VARS, INACTIVE_VARS, DAURVar_histogram_point_real = 0, DAURVar_Nkinds = 1 } |
enum | { CV_ID_DEFAULT = 0, MINIMUM_METRIC, RELATIVE_TOLERANCE, DECREASE_TOLERANCE, SILENT_OUTPUT, QUIET_OUTPUT, NORMAL_OUTPUT, VERBOSE_OUTPUT, DEBUG_OUTPUT, NOCOVAR =0, EXP_L2, EXP_L1, EMPTY_TYPE =0, CONTINUOUS_DESIGN, DISCRETE_DESIGN_RANGE, DISCRETE_DESIGN_SET_INT, DISCRETE_DESIGN_SET_STRING, DISCRETE_DESIGN_SET_REAL, NORMAL_UNCERTAIN, LOGNORMAL_UNCERTAIN, UNIFORM_UNCERTAIN, LOGUNIFORM_UNCERTAIN, TRIANGULAR_UNCERTAIN, EXPONENTIAL_UNCERTAIN, BETA_UNCERTAIN, GAMMA_UNCERTAIN, GUMBEL_UNCERTAIN, FRECHET_UNCERTAIN, WEIBULL_UNCERTAIN, HISTOGRAM_BIN_UNCERTAIN, POISSON_UNCERTAIN, BINOMIAL_UNCERTAIN, NEGATIVE_BINOMIAL_UNCERTAIN, GEOMETRIC_UNCERTAIN, HYPERGEOMETRIC_UNCERTAIN, HISTOGRAM_POINT_UNCERTAIN_INT, HISTOGRAM_POINT_UNCERTAIN_STRING, HISTOGRAM_POINT_UNCERTAIN_REAL, CONTINUOUS_INTERVAL_UNCERTAIN, DISCRETE_INTERVAL_UNCERTAIN, DISCRETE_UNCERTAIN_SET_INT, DISCRETE_UNCERTAIN_SET_STRING, DISCRETE_UNCERTAIN_SET_REAL, CONTINUOUS_STATE, DISCRETE_STATE_RANGE, DISCRETE_STATE_SET_INT, DISCRETE_STATE_SET_STRING, DISCRETE_STATE_SET_REAL, CEUVar_interval = 0, CEUVar_Nkinds = 1 } |
enum | { TABULAR_NONE = 0, TABULAR_HEADER = 1, TABULAR_EVAL_ID = 2, TABULAR_IFACE_ID = 4, TABULAR_EXPER_ANNOT = TABULAR_HEADER | TABULAR_EVAL_ID, TABULAR_ANNOTATED = TABULAR_HEADER | TABULAR_EVAL_ID | TABULAR_IFACE_ID, NO_RESULTS =0, REFINEMENT_RESULTS, INTERMEDIATE_RESULTS, FINAL_RESULTS, SUBSPACE_NORM_DEFAULT =0, SUBSPACE_NORM_MEAN_VALUE, SUBSPACE_NORM_MEAN_GRAD, SUBSPACE_NORM_LOCAL_GRAD, TOTAL_CDV =0, TOTAL_DDIV, TOTAL_DDSV, TOTAL_DDRV, TOTAL_CAUV, TOTAL_DAUIV, TOTAL_DAUSV, TOTAL_DAURV, TOTAL_CEUV, TOTAL_DEUIV, TOTAL_DEUSV, TOTAL_DEURV, TOTAL_CSV, TOTAL_DSIV, TOTAL_DSSV, TOTAL_DSRV, NUM_VC_TOTALS, DEUIVar_interval = 0, DEUIVar_set_int = 1, DEUIVar_Nkinds = 2 } |
enum | { RESULTS_OUTPUT_TEXT = 1, RESULTS_OUTPUT_HDF5 = 2, DEFAULT_SYNCHRONIZATION =0, BLOCKING_SYNCHRONIZATION, NONBLOCKING_SYNCHRONIZATION, ROTATION_METHOD_UNRANKED, ROTATION_METHOD_RANKED, DEUSVar_set_str = 0, DEUSVar_Nkinds = 1 } |
enum | { FLEXIBLE_RESULTS, LABELED_RESULTS, DEFAULT_SCHEDULING, MASTER_SCHEDULING, PEER_SCHEDULING, PEER_DYNAMIC_SCHEDULING, PEER_STATIC_SCHEDULING, DYNAMIC_SCHEDULING, STATIC_SCHEDULING, NO_PARALLEL_MODE =0, SURROGATE_MODEL_MODE, TRUTH_MODEL_MODE, SUB_MODEL_MODE, INTERFACE_MODE, DEURVar_set_real = 0, DEURVar_Nkinds = 1 } |
enum | { NO_MODEL_FORMAT =0, TEXT_ARCHIVE =1, BINARY_ARCHIVE =2, ALGEBRAIC_FILE =4, ALGEBRAIC_CONSOLE =8, DEFAULT_CONFIG, PUSH_DOWN, PUSH_UP, NO_DERIVS =0, ALL_DERIVS, MIXED_DERIVS, DiscSetVar_design_set_int = 0, DiscSetVar_design_set_str = 1, DiscSetVar_design_set_real = 2, DiscSetVar_state_set_int = 3, DiscSetVar_state_set_str = 4, DiscSetVar_state_set_real = 5, DiscSetVar_Nkinds = 6 } |
enum | { STD_NORMAL_U, STD_UNIFORM_U, PARTIAL_ASKEY_U, ASKEY_U, EXTENDED_U, FT_LS, FT_RLS2, NUM_UNC_REAL_CONT = 4 } |
number of real-valued uncertain contiguous containers | |
enum | { DEFAULT_COVARIANCE, NO_COVARIANCE, DIAGONAL_COVARIANCE, FULL_COVARIANCE, NO_C3_ADVANCEMENT =0, START_RANK_ADVANCEMENT, START_ORDER_ADVANCEMENT, MAX_RANK_ADVANCEMENT, MAX_ORDER_ADVANCEMENT, MAX_RANK_ORDER_ADVANCEMENT, NUM_UNC_INT_CONT = 2 } |
number of int-valued uncertain contiguous containers | |
enum | { NO_INT_REFINE =0, IS, AIS, MMAIS, NUM_UNC_STR_CONT = 2 } |
number of string-valued uncertain contiguous containers | |
enum | miAlg : unsigned short { MI_ALG_KSG1 = 0, MI_ALG_KSG2 = 1 } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | CG_UPDATETYPE { CG_STEEPEST, CG_FLETCHER_REEVES, CG_POLAK_RIBIERE, CG_POLAK_RIBIERE_PLUS, CG_HESTENES_STIEFEL } |
NonlinearCG update options. | |
enum | CG_LINESEARCHTYPE { CG_FIXED_STEP, CG_LS_SIMPLE, CG_LS_BRENT, CG_LS_WOLFE } |
NonlinearCG linesearch options. | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
to restrict type of auto scaling allowed | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
indicate type of scaling active for a component (bitwise) | |
enum | EvalType { NO_EVALUATOR, NLF_EVALUATOR, CON_EVALUATOR } |
enumeration for the type of evaluator function | |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
enum | { INTERF_EVAL_STORE_SIMULATION = 0, INTERF_EVAL_STORE_NONE, INTERF_EVAL_STORE_ALL, OBJECTIVE, INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, NO_GRAPH_RECURSION =0, KL_GRAPH_RECURSION, PARTIAL_GRAPH_RECURSION, FULL_GRAPH_RECURSION, NO_CORRECTION =0, ADDITIVE_CORRECTION, MULTIPLICATIVE_CORRECTION, COMBINED_CORRECTION, EMPTY_VIEW =0, RELAXED_ALL, MIXED_ALL, RELAXED_DESIGN, RELAXED_UNCERTAIN, RELAXED_ALEATORY_UNCERTAIN, RELAXED_EPISTEMIC_UNCERTAIN, RELAXED_STATE, MIXED_DESIGN, MIXED_UNCERTAIN, MIXED_ALEATORY_UNCERTAIN, MIXED_EPISTEMIC_UNCERTAIN, MIXED_STATE, DAUSVar_histogram_point_str = 0, DAUSVar_Nkinds = 1, NEW_CANDIDATE = 1, CANDIDATE_ACCEPTED = 2, CANDIDATE_STATE = (NEW_CANDIDATE | CANDIDATE_ACCEPTED), NEW_CENTER = 8, CENTER_BUILT = 16, CENTER_STATE = (NEW_CENTER | CENTER_BUILT), NEW_TR_FACTOR = 64, NEW_TRUST_REGION = (NEW_CENTER | NEW_TR_FACTOR), HARD_CONVERGED = 128, SOFT_CONVERGED = 256, MIN_TR_CONVERGED = 512, MAX_ITER_CONVERGED = 1024, CONVERGED } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
enum | { COBYLA, DIRECT, EA, MS, PS, SW, BETA, VARS_ERROR = -11, CONS_ERROR = -10, RESP_ERROR = -9, APPROX_ERROR = -8, METHOD_ERROR = -7, MODEL_ERROR = -6, IO_ERROR = -5, INTERFACE_ERROR = -4, CONSTRUCT_ERROR = -3, PARSE_ERROR = -2, OTHER_ERROR = -1, DEFAULT_INTERFACE =0, APPROX_INTERFACE, FORK_INTERFACE =PROCESS_INTERFACE_BIT, SYSTEM_INTERFACE, GRID_INTERFACE, TEST_INTERFACE =DIRECT_INTERFACE_BIT, PLUGIN_INTERFACE, MATLAB_INTERFACE, LEGACY_PYTHON_INTERFACE, PYTHON_INTERFACE, SCILAB_INTERFACE, DEFAULT_METHOD =0, HYBRID =(META_BIT | PARALLEL_BIT), PARETO_SET, MULTI_START, RICHARDSON_EXTRAP =(ANALYZER_BIT | VERIF_BIT), CENTERED_PARAMETER_STUDY =(ANALYZER_BIT | PSTUDYDACE_BIT), LIST_PARAMETER_STUDY, MULTIDIM_PARAMETER_STUDY, VECTOR_PARAMETER_STUDY, DACE, FSU_CVT, FSU_HALTON, FSU_HAMMERSLEY, PSUADE_MOAT, LOCAL_RELIABILITY =(ANALYZER_BIT | NOND_BIT), GLOBAL_RELIABILITY, SURROGATE_BASED_UQ, POLYNOMIAL_CHAOS, MULTILEVEL_POLYNOMIAL_CHAOS, MULTIFIDELITY_POLYNOMIAL_CHAOS, STOCH_COLLOCATION, MULTIFIDELITY_STOCH_COLLOCATION, C3_FUNCTION_TRAIN, MULTILEVEL_FUNCTION_TRAIN, MULTIFIDELITY_FUNCTION_TRAIN, CUBATURE_INTEGRATION, SPARSE_GRID_INTEGRATION, QUADRATURE_INTEGRATION, BAYES_CALIBRATION, GPAIS, POF_DARTS, RKD_DARTS, IMPORTANCE_SAMPLING, ADAPTIVE_SAMPLING, MULTILEVEL_SAMPLING, MULTIFIDELITY_SAMPLING, MULTILEVEL_MULTIFIDELITY_SAMPLING, APPROXIMATE_CONTROL_VARIATE, LIST_SAMPLING, RANDOM_SAMPLING, LOCAL_INTERVAL_EST, LOCAL_EVIDENCE, GLOBAL_INTERVAL_EST, GLOBAL_EVIDENCE, SURROGATE_BASED_LOCAL =(MINIMIZER_BIT | SURRBASED_BIT), DATA_FIT_SURROGATE_BASED_LOCAL, HIERARCH_SURROGATE_BASED_LOCAL, SURROGATE_BASED_GLOBAL, EFFICIENT_GLOBAL, NL2SOL =(MINIMIZER_BIT | LEASTSQ_BIT), NLSSOL_SQP, OPTPP_G_NEWTON, ASYNCH_PATTERN_SEARCH =(MINIMIZER_BIT | OPTIMIZER_BIT), OPTPP_PDS, COLINY_BETA, COLINY_COBYLA, COLINY_DIRECT, COLINY_MULTI_START, COLINY_EA, COLINY_PATTERN_SEARCH, COLINY_SOLIS_WETS, MOGA, SOGA, NCSU_DIRECT, MESH_ADAPTIVE_SEARCH, MIT_NOWPAC, MIT_SNOWPAC, GENIE_OPT_DARTS, GENIE_DIRECT, DEMO_TPL, NONLINEAR_CG, OPTPP_CG, OPTPP_Q_NEWTON, OPTPP_FD_NEWTON, OPTPP_NEWTON, NPSOL_SQP, NLPQL_SQP, DOT_BFGS, DOT_FRCG, DOT_MMFD, DOT_SLP, DOT_SQP, CONMIN_FRCG, CONMIN_MFD, ROL, DL_SOLVER, BRANCH_AND_BOUND =(MINIMIZER_BIT | OPTIMIZER_BIT | LEASTSQ_BIT), DEFAULT_POINTS, MINIMUM_POINTS, RECOMMENDED_POINTS, TOTAL_POINTS, BASE_RESPONSE =0, SIMULATION_RESPONSE, EXPERIMENT_RESPONSE, DEFAULT_DOMAIN =0, RELAXED_DOMAIN, MIXED_DOMAIN, DEFAULT_CORRECTION = 0, SINGLE_CORRECTION, FULL_MODEL_FORM_CORRECTION, FULL_SOLUTION_LEVEL_CORRECTION, SEQUENCE_CORRECTION, SETUP_MODEL, SETUP_USERFUNC, CAUVar_normal = 0, CAUVar_lognormal = 1, CAUVar_uniform = 2, CAUVar_loguniform = 3, CAUVar_triangular = 4, CAUVar_exponential = 5, CAUVar_beta = 6, CAUVar_gamma = 7, CAUVar_gumbel = 8, CAUVar_frechet = 9, CAUVar_weibull = 10, CAUVar_histogram_bin = 11, CAUVar_Nkinds = 12, ANALYTIC_SOLUTION = 1, REORDERED_ANALYTIC_SOLUTION, R_ONLY_LINEAR_CONSTRAINT, N_VECTOR_LINEAR_CONSTRAINT, R_AND_N_NONLINEAR_CONSTRAINT, N_VECTOR_LINEAR_OBJECTIVE, FULL_TENSOR, FILTERED_TENSOR, RANDOM_TENSOR, AS_FUNC =1, AS_GRAD =2, AS_HESS =4, DISALLOW, TARGET, BOUNDS, SCALE_NONE = 0, SCALE_VALUE = 1, SCALE_LOG = 2, SCALE_AUTO = 4, APPROX_RESPONSE =1, TRUTH_RESPONSE, TH_SILENT_OUTPUT, TH_QUIET_OUTPUT, TH_NORMAL_OUTPUT, TH_VERBOSE_OUTPUT, TH_DEBUG_OUTPUT, DIR_CLEAN, DIR_PERSIST, DIR_ERROR } |
define directory creation options | |
enum | { MODEL_EVAL_STORE_TOP_METHOD = 0, MODEL_EVAL_STORE_NONE, MODEL_EVAL_STORE_ALL, MODEL_EVAL_STORE_ALL_METHODS, SYNCHRONOUS_INTERFACE, ASYNCHRONOUS_INTERFACE, SUBMETHOD_DEFAULT =0, SUBMETHOD_NONE, SUBMETHOD_COLLABORATIVE, SUBMETHOD_EMBEDDED, SUBMETHOD_SEQUENTIAL, SUBMETHOD_LHS, SUBMETHOD_RANDOM, SUBMETHOD_BOX_BEHNKEN, SUBMETHOD_CENTRAL_COMPOSITE, SUBMETHOD_GRID, SUBMETHOD_OA_LHS, SUBMETHOD_OAS, SUBMETHOD_MFMC, SUBMETHOD_ACV_IS, SUBMETHOD_ACV_MF, SUBMETHOD_ACV_RD, SUBMETHOD_DREAM, SUBMETHOD_GPMSA, SUBMETHOD_MUQ, SUBMETHOD_QUESO, SUBMETHOD_WASABI, SUBMETHOD_CONMIN, SUBMETHOD_DOT, SUBMETHOD_NLPQL, SUBMETHOD_NPSOL, SUBMETHOD_OPTPP, SUBMETHOD_NPSOL_OPTPP, SUBMETHOD_EA, SUBMETHOD_DIRECT, SUBMETHOD_EGO, SUBMETHOD_SBLO, SUBMETHOD_SBGO, SUBMETHOD_AMV_X, SUBMETHOD_AMV_U, SUBMETHOD_AMV_PLUS_X, SUBMETHOD_AMV_PLUS_U, SUBMETHOD_TANA_X, SUBMETHOD_TANA_U, SUBMETHOD_QMEA_X, SUBMETHOD_QMEA_U, SUBMETHOD_NO_APPROX, SUBMETHOD_EGRA_X, SUBMETHOD_EGRA_U, SUBMETHOD_CONVERGE_ORDER, SUBMETHOD_CONVERGE_QOI, SUBMETHOD_ESTIMATE_ORDER, NO_SURROGATE =0, UNCORRECTED_SURROGATE, AUTO_CORRECTED_SURROGATE, BYPASS_SURROGATE, MODEL_DISCREPANCY, AGGREGATED_MODEL_PAIR, AGGREGATED_MODELS, GENERIC_FNS = 0, OBJECTIVE_FNS, CALIB_TERMS, DEFAULT_VIEW =0, ALL_VIEW, DESIGN_VIEW, UNCERTAIN_VIEW, ALEATORY_UNCERTAIN_VIEW, EPISTEMIC_UNCERTAIN_VIEW, STATE_VIEW, DAUIVar_poisson = 0, DAUIVar_binomial = 1, DAUIVar_negative_binomial = 2, DAUIVar_geometric = 3, DAUIVar_hypergeometric = 4, DAUIVar_histogram_point_int = 5, DAUIVar_Nkinds = 6, TYPE_U =1, TYPE_B =2, TYPE_E =3, TYPE_EB =4, CORR_APPROX_RESPONSE =1, UNCORR_APPROX_RESPONSE, CORR_TRUTH_RESPONSE, UNCORR_TRUTH_RESPONSE, FILEOP_SILENT, FILEOP_WARN, FILEOP_ERROR } |
enum indicating action on failed file operation More... | |
Functions | |
void | batch_means_interval (RealMatrix &mcmc_matrix, RealMatrix &interval_matrix, RealMatrix &means_matrix, int moment, Real alpha) |
void | batch_means_percentile (RealMatrix &mcmc_matrix, RealMatrix &interval_matrix, RealMatrix &means_matrix, Real percentile, Real alpha) |
CommandShell & | flush (CommandShell &shell) |
convenient shell manipulator function to "flush" the shell More... | |
void | read_sized_data (std::istream &s, RealVectorArray &va, size_t num_rows, int num_cols) |
void | read_fixed_rowsize_data (std::istream &s, RealVectorArray &va, int num_cols, bool row_major) |
void | read_unsized_data (std::istream &s, RealVectorArray &va, bool row_major) |
void | read_config_vars_multifile (const std::string &basename, int num_expts, int ncv, std::vector< Variables > &config_vars) |
void | read_config_vars_singlefile (const std::string &basename, int num_expts, int ncv, std::vector< Variables > &config_vars) |
void | read_field_values (const std::string &basename, int expt_num, RealVectorArray &field_vars) |
void | read_field_values (const std::string &basename, int expt_num, RealVector &field_vars) |
void | read_coord_values (const std::string &basename, int expt_num, RealMatrix &coords) |
void | read_coord_values (const std::string &basename, RealMatrix &coords) |
void | read_covariance (const std::string &basename, int expt_num, RealMatrix &cov_vals) |
void | read_covariance (const std::string &basename, int expt_num, Dakota::CovarianceMatrix::FORMAT format, int num_vals, RealMatrix &cov_vals) |
bool | nearby (const RealVector &rv1, const RealVector &rv2, Real rel_tol) |
tolerance-based equality operator for RealVector | |
bool | operator== (const ShortArray &dsa1, const ShortArray &dsa2) |
equality operator for ShortArray | |
bool | operator== (const StringArray &dsa1, const StringArray &dsa2) |
equality operator for StringArray | |
Real | rel_change_L2 (const RealVector &curr_rv, const RealVector &prev_rv) |
Computes relative change between RealVectors using Euclidean L2 norm. | |
Real | rel_change_L2 (const RealVector &curr_rv1, const RealVector &prev_rv1, const IntVector &curr_iv, const IntVector &prev_iv, const RealVector &curr_rv2, const RealVector &prev_rv2) |
Computes relative change between Real/int/Real vector triples using Euclidean L2 norm. | |
void | compute_col_means (RealMatrix &matrix, RealVector &avg_vals) |
Computes means of columns of matrix. | |
void | compute_col_stdevs (RealMatrix &matrix, RealVector &avg_vals, RealVector &std_devs) |
Computes standard deviations of columns of matrix. | |
void | sort_vector (const RealVector &vec, RealVector &sort_vec, IntVector &indices) |
Sort incoming vector with result and corresponding indices returned in passed arguments. | |
void | sort_matrix_columns (const RealMatrix &mat, RealMatrix &sort_mat, IntMatrix &indices) |
Sort incoming matrix columns with result and corresponding indices returned in passed arguments. | |
void | center_matrix_rows (RealMatrix &mat) |
center the incoming matrix rows by their means, in-place | |
void | center_matrix_cols (RealMatrix &mat) |
center the incoming matrix columns by their means, in-place | |
bool | is_matrix_symmetric (const RealMatrix &matrix) |
Test if incoming matrix is symmetric. | |
void | remove_column (RealMatrix &matrix, int index) |
Removes column from matrix. | |
void | copy_data (const MatrixXd &src_mat, RealMatrix &dst_mat) |
Copy data from Eigen::MatrixXd to RealMatrix. | |
void | copy_data (const RealMatrix &src_mat, MatrixXd &dst_mat) |
Copy data from RealMatrix to Eigen::MatrixXd. | |
void | view_data (const RealMatrix &src_mat, Eigen::Map< MatrixXd > &dst_mat) |
Create a view of data in RealMatrix as an Eigen::MatrixXd. | |
std::vector< std::string > | strsplit (const std::string &input) |
Trim then split a string on {space, tab} and return as vector of strings. | |
std::string::size_type | longest_strlen (const std::vector< std::string > &vecstr) |
Return the length of the longest string in the passed vector. | |
void | iround (const RealVector &input_vec, IntVector &rounded_vec) |
round entries of a RealVector yielding an IntVector | |
bool | operator== (const IntArray &dia1, const IntArray &dia2) |
equality operator for IntArray | |
template<typename T > | |
bool | operator== (const std::vector< T > &vec, typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav) |
equality operator for std::vector and boost::multi_array::const_array_view | |
template<typename T > | |
bool | operator== (typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav, const std::vector< T > &vec) |
equality operator for boost::multi_array::const_array_view and std::vector | |
template<typename T > | |
bool | operator== (const boost::multi_array< T, 1 > &ma, typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav) |
equality operator for boost::multi_array and boost::multi_array::const_array_view | |
template<typename T > | |
bool | operator== (typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav, const boost::multi_array< T, 1 > &ma) |
equality operator for boost::multi_array::const_array_view and boost::multi_array | |
bool | operator!= (const IntArray &dia1, const IntArray &dia2) |
inequality operator for IntArray | |
bool | operator!= (const ShortArray &dsa1, const ShortArray &dsa2) |
inequality operator for ShortArray | |
bool | operator!= (const StringArray &dsa1, const StringArray &dsa2) |
inequality operator for StringArray | |
template<typename T > | |
bool | operator!= (const std::vector< T > &vec, typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav) |
inequality operator for std::vector and boost::multi_array::const_array_view | |
template<typename T > | |
bool | operator!= (typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav, const std::vector< T > &vec) |
inequality operator for boost::multi_array::const_array_view and std::vector | |
template<typename T > | |
bool | operator!= (const boost::multi_array< T, 1 > &ma, typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav) |
inequality operator for boost::multi_array and boost::multi_array::const_array_view | |
template<typename T > | |
bool | operator!= (typename boost::multi_array< T, 1 >::template const_array_view< 1 >::type mav, const boost::multi_array< T, 1 > &ma) |
inequality operator for boost::multi_array::const_array_view and boost::multi_array | |
template<typename OrdinalType > | |
bool | non_zero (const std::vector< OrdinalType > &vec) |
checks for any non-zero value in std::vector(); useful for determining whether an array of request codes (e.g., an ASV) has any actionable content | |
template<typename VectorType > | |
bool | is_equal_vec (const RealVector &vec1, const VectorType &vec2) |
equality function for RealVector and a vector of arbitrary type | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
bool | is_equal_partial (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &vec1, const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &vec2, OrdinalType2 start_index2) |
partial equality operator for navigating different views | |
bool | is_equal_partial (const StringMultiArray &ma1, const StringMultiArray &ma2, size_t start_index2) |
partial equality operator for navigating different views | |
template<typename MatrixType , typename VectorType > | |
void | apply_matrix_partial (const MatrixType &M, const VectorType &v1, VectorType &v2) |
Applies a RealMatrix to a vector (or subset of vector) v1. More... | |
template<typename VectorType > | |
void | apply_matrix_transpose_partial (const RealMatrix &M, const VectorType &v1, VectorType &v2) |
Applies transpose of a RealMatrix to a vector (or subset of vector) v1. More... | |
std::string | strtolower (const std::string &s) |
Return lowercase copy of string s. | |
bool | strbegins (const std::string &input, const std::string &test) |
Return true if input string begins with string test. | |
bool | strends (const std::string &input, const std::string &test) |
Return true if input string ends with string test. | |
bool | strcontains (const std::string &input, const std::string &test) |
Return true if input string contains string test. | |
void | build_label (String &label, const String &root_label, size_t tag, const String &separator="") |
create a label by appending a numerical tag to the root_label, o | |
void | build_labels (StringArray &label_array, const String &root_label) |
create an array of labels by tagging root_label for each entry in label_array. Uses build_label(). | |
void | build_labels (StringMultiArray &label_array, const String &root_label) |
create an array of labels by tagging root_label for each entry in label_array. Uses build_label(). | |
void | build_labels_partial (StringArray &label_array, const String &root_label, size_t start_index, size_t num_items) |
create a partial array of labels by tagging root_label for a subset of entries in label_array. Uses build_label(). | |
template<typename vecType , typename valueType > | |
void | assign_value (vecType &target, valueType val) |
assign a value to an arbitrary vector | |
template<typename vecType , typename valueType > | |
void | assign_value (vecType &target, valueType val, size_t start, size_t len) |
assign a value to a portion of an arbitrary vector | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data (const std::vector< Teuchos::SerialDenseVector< OrdinalType, ScalarType > > &sdva, Teuchos::SerialDenseMatrix< OrdinalType, ScalarType > &sdm) |
copy Array<Teuchos::SerialDenseVector<OT,ST> > to Teuchos::SerialDenseMatrix<OT,ST> - used by read_data_tabular - RWH | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data_transpose (const std::vector< Teuchos::SerialDenseVector< OrdinalType, ScalarType > > &sdva, Teuchos::SerialDenseMatrix< OrdinalType, ScalarType > &sdm) |
copy Array<Teuchos::SerialDenseVector<OT,ST> > to transposed Teuchos::SerialDenseMatrix<OT,ST> - used by read_data_tabular - RWH | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv, Teuchos::SerialDenseMatrix< OrdinalType1, ScalarType > &sdm, OrdinalType2 nr, OrdinalType2 nc) |
copy Teuchos::SerialDenseVector<OT,ST> to Teuchos::SerialDenseMatrix<OT,ST> - used by NestedModel::update_sub_iterator - RWH | |
template<typename T > | |
void | copy_data (const std::vector< std::vector< T > > &d2a, std::vector< T > &da) |
copy std::vector<vector<T> > to std::vector<T>(unroll vecOfvecs into vector) - used by ProcessApplicInterface::write_parameters_files - RWH | |
template<typename T > | |
void | copy_data (const std::map< int, T > &im, std::vector< T > &da) |
copy map<int, T> to std::vector<T> (discard integer keys) - used by SurrBasedGlobalMinimizer::core_run - RWH | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data (const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &sdv1, Teuchos::SerialDenseVector< OrdinalType, ScalarType > &sdv2) |
copy Teuchos::SerialDenseVector<OrdinalType, ScalarType> to same (used in place of operator= when a deep copy is required) - used by Response - MSE | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data (const Teuchos::SerialDenseMatrix< OrdinalType, ScalarType > &sdm1, Teuchos::SerialDenseMatrix< OrdinalType, ScalarType > &sdm2) |
copy Teuchos::SerialDenseMatrix<OrdinalType, ScalarType> to same (used in place of operator= when a deep copy is required) - used by Response - MSE | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data (const Teuchos::SerialSymDenseMatrix< OrdinalType, ScalarType > &ssdm1, Teuchos::SerialSymDenseMatrix< OrdinalType, ScalarType > &ssdm2) |
copy Teuchos::SerialSymDenseMatrix<OrdinalType, ScalarType> to same (used in place of operator= when a deep copy is required) - used by Response - MSE | |
void | copy_data (const RealMatrix &source, RealMatrix &dest, int num_rows, int num_cols, int start_row=0, int start_col=0) |
Taken from pecos/src/MathTools.hpp, BUT not templated because the implementation is specific to RealMatrix. | |
template<typename OrdinalType , typename ScalarType , typename VecType > | |
void | copy_data (const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &sdv, VecType &vec) |
copy Teuchos::SerialDenseVector<OrdinalType, ScalarType> to VecType - used by APPS for HOPS vector types | |
template<typename OrdinalType , typename ScalarType1 , typename ScalarType2 > | |
void | copy_data (const Teuchos::SerialDenseVector< OrdinalType, ScalarType1 > &sdv, std::vector< ScalarType2 > &vec) |
copy Teuchos::SerialDenseVector<OrdinalType, ScalarType> to std::vector<ScalarType> - used by DakotaModel | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data (const std::vector< ScalarType > &da, Teuchos::SerialDenseVector< OrdinalType, ScalarType > &sdv) |
copy Array<ScalarType> to Teuchos::SerialDenseVector<OrdinalType, ScalarType> - used by NOWPACOptimizer - MSE | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data (const ScalarType *ptr, const OrdinalType2 ptr_len, Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv) |
copy ScalarType* to Teuchos::SerialDenseVector<OrdinalType, ScalarType> - used by ScalingModel::response_modify_n2s - RWH | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv, ScalarType *ptr, const OrdinalType2 ptr_len) |
copy ScalarType* to Teuchos::SerialDenseVector<OrdinalType, ScalarType> - used by NL2SOLLeastSq::core_run - RWH | |
template<typename OrdinalType , typename ScalarType > | |
void | copy_data (const ScalarType *ptr1, ScalarType *ptr2, const OrdinalType ptr_len) |
copy ScalarType* to ScalarType* | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv, std::vector< Teuchos::SerialDenseVector< OrdinalType1, ScalarType > > &sdva, OrdinalType2 num_vec, OrdinalType2 vec_len) |
copy SerialDenseVector<> to Array<SerialDenseVector<> > - used by ConcurrentMetaIterator constructor - RWH | |
template<typename vecType1 , typename vecType2 > | |
void | copy_data_partial (const vecType1 &source, size_t source_start_idx, vecType2 &target, size_t target_start_idx, size_t len) |
copy a portion arbitrary vector to all of another arbitrary vector | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data_partial (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv1, OrdinalType2 start_index1, OrdinalType2 num_items, Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv2) |
copy portion of first SerialDenseVector to all of second SerialDenseVector - used by DataTransformModel::vars_mapping - RWH | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data_partial (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv1, Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv2, OrdinalType2 start_index2) |
copy all of first SerialDenseVector to portion of second SerialDenseVector - used by MixedVariables - RWH, NLSSOLLeastSq - BMA | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data_partial (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv1, OrdinalType2 start_index1, OrdinalType2 num_items, Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv2, OrdinalType2 start_index2) |
copy portion of first SerialDenseVector to portion of second SerialDenseVector - used by ScalingModel::secondary_resp_scaled2native - RWH | |
template<typename OrdinalType1 , typename OrdinalType2 , typename ScalarType > | |
void | copy_data_partial (const Teuchos::SerialDenseVector< OrdinalType1, ScalarType > &sdv1, std::vector< ScalarType > &da2, OrdinalType2 start_index2) |
copy all of first SerialDenseVector to portion of second SerialDenseVector - used by SharedSurfpackApproxData::merge_variable_arrays - RWH | |
template<typename T > | |
void | copy_data_partial (const std::vector< T > &da1, size_t start_index1, size_t num_items, std::vector< T > &da2) |
copy portion of first Array<T> to all of second Array<T> - used by SharedResponseDataRep constructor - RWH | |
template<typename T > | |
void | copy_data_partial (const std::vector< T > &da1, std::vector< T > &da2, size_t start_index2) |
copy all of first Array<T> to portion of second Array<T> - used by ParamStudy::multidim_loop - RWH | |
template<typename T > | |
void | copy_data_partial (const std::vector< T > &da, boost::multi_array< T, 1 > &bma, size_t start_index_bma) |
copy all of first Array<T> to portion of boost::multi_array<T, 1> - used by RelaxedVariables - RWH | |
template<typename VectorType > | |
void | copy_column_vector (const RealMatrix &m, RealMatrix::ordinalType j, VectorType &col) |
Copies a column of a Teuchos_SerialDenseMatrix<int,Real> to std::vector<Real> | |
template<typename VectorType > | |
void | copy_row_vector (const RealMatrix &m, RealMatrix::ordinalType i, VectorType &row) |
Copies a row of a Teuchos_SerialDenseMatrix<int,Real> to std::vector<Real> | |
template<typename ScalarType > | |
void | insert_row_vector (const std::vector< ScalarType > &row, RealMatrix::ordinalType i, RealMatrix &m) |
Inserts a std::vector<Real> into a row of a Teuchos_SerialDenseMatrix<int,Real> | |
void | merge_data_partial (const IntVector &d_vec, RealVector &m_vec, size_t start_index_ma) |
merge a discrete integer vector into a single continuous vector | |
void | merge_data_partial (const IntVector &d_vec, RealArray &m_array, size_t start_index_ma) |
merge a discrete integer vector into a single continuous array | |
template<typename OrdinalType , typename ScalarType > | |
const ScalarType & | set_index_to_value (OrdinalType index, const std::set< ScalarType > &values) |
retrieve the set value corresponding to the passed index | |
template<typename ScalarType > | |
size_t | set_value_to_index (const ScalarType &value, const std::set< ScalarType > &values) |
calculate the set index corresponding to the passed value | |
template<typename OrdinalType , typename KeyType , typename ValueType > | |
const KeyType & | map_index_to_key (OrdinalType index, const std::map< KeyType, ValueType > &pairs) |
retrieve the set value corresponding to the passed index | |
template<typename OrdinalType , typename KeyType , typename ValueType > | |
const ValueType & | map_index_to_value (OrdinalType index, const std::map< KeyType, ValueType > &pairs) |
retrieve the set value corresponding to the passed index | |
template<typename KeyType , typename ValueType > | |
void | map_keys_to_set (const std::map< KeyType, ValueType > &source_map, std::set< KeyType > &target_set) |
calculate the map index corresponding to the passed key | |
template<typename KeyType , typename ValueType > | |
size_t | map_key_to_index (const KeyType &key, const std::map< KeyType, ValueType > &pairs) |
calculate the map index corresponding to the passed key | |
template<typename KeyType , typename ValueType > | |
size_t | map_value_to_index (const ValueType &value, const std::map< KeyType, ValueType > &pairs) |
calculate the map index corresponding to the passed value (not the key) | |
template<typename KeyType , typename ValueType > | |
size_t | map_value_to_index (const ValueType &value, const std::multimap< KeyType, ValueType > &pairs) |
calculate the map index corresponding to the passed value (not the key) | |
template<typename OrdinalType , typename ScalarType > | |
void | x_y_pairs_to_x_set (const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &xy_pairs, std::set< ScalarType > &x_set) |
convert a SerialDenseVector of head-to-tail (x,y) pairs into a std::set of (x), discarding the y values | |
template<typename ScalarType > | |
ScalarType | find_min (const std::vector< ScalarType > &vec) |
template<typename OrdinalType , typename ScalarType > | |
ScalarType | find_min (const std::vector< ScalarType > &vec, OrdinalType start, OrdinalType end) |
template<typename OrdinalType , typename ScalarType > | |
ScalarType | find_min (const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &vec) |
template<typename OrdinalType , typename ScalarType > | |
ScalarType | find_min (const ScalarType *vec, OrdinalType len) |
template<typename ScalarType > | |
ScalarType | find_max (const std::vector< ScalarType > &vec) |
template<typename OrdinalType , typename ScalarType > | |
ScalarType | find_max (const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &vec) |
template<typename OrdinalType , typename ScalarType > | |
ScalarType | find_max (const ScalarType *vec, const OrdinalType len) |
template<typename ContainerType > | |
size_t | find_index (const ContainerType &c, const typename ContainerType::value_type &search_data) |
generic find_index (inactive) | |
template<typename T > | |
size_t | find_index (const boost::multi_array< T, 1 > &bma, const T &search_data) |
compute the index of an entry within a boost::multi_array | |
size_t | find_index (SizetMultiArrayConstView bmacv, size_t search_data) |
compute the index of an entry within a boost::multi_array view | |
size_t | find_index (StringMultiArrayConstView bmacv, const String &search_data) |
compute the index of an entry within a boost::multi_array view | |
template<typename ListT > | |
size_t | find_index (const ListT &l, const typename ListT::value_type &val) |
compute the index of an entry within a std::list | |
template<typename ListT > | |
ListT::const_iterator | find_if (const ListT &c, bool(*test_fn)(const typename ListT::value_type &, const std::string &), const std::string &test_fn_data) |
return an iterator to the first list element satisfying the predicate test_fn w.r.t. the passed test_fn_data; end if not found | |
template<typename VectorType , typename ScalarType > | |
void | copy_data (const std::vector< VectorType > &va, ScalarType *ptr, int ptr_len) |
void | copy_data (SizetMultiArrayConstView ma, SizetArray &da) |
copy boost::multi_array view to Array - used by ActiveSet::derivative_vector - RWH | |
void | copy_data (StringMultiArrayConstView ma, StringArray &da) |
copy boost::multi_array view to Array - used by Pecos::copy_data - RWH | |
template<typename DakContainerType > | |
bool | contains (const DakContainerType &v, const typename DakContainerType::value_type &val) |
return true if the item val appears in container v | |
template<class RandomIt , class URBG > | |
void | rand_shuffle (RandomIt first, RandomIt last, URBG &&g) |
Random shuffle with C++17 shuffle API, but using Boost for portability. | |
void | abort_handler (int code) |
global function which handles serial or parallel aborts | |
void | abort_throw_or_exit (int dakota_code) |
throw or exit depending on abort_mode More... | |
void | register_signal_handlers () |
Tie various signal handlers to Dakota's abort_handler function. More... | |
void | mpi_debug_hold () |
Global function to hold Dakota processes to help with MPI debugging. More... | |
template<typename T > | |
T | abort_handler_t (int code) |
void | svd (RealMatrix &matrix, RealVector &singular_vals, RealMatrix &v_trans, bool compute_vectors=true) |
Compute the SVD of an arbitrary matrix A = USV^T. More... | |
void | singular_values (RealMatrix &matrix, RealVector &singular_values) |
compute the singular values without storing any singular vectors (A will be destroyed) | |
int | qr (RealMatrix &A) |
Compute an in-place QR factorization A = QR. More... | |
int | qr_rsolve (const RealMatrix &q_r, bool transpose, RealMatrix &rhs) |
Perform a multiple right-hand sides Rinv * rhs solve using the R from a qr factorization. More... | |
double | det_AtransA (RealMatrix &A) |
Use SVD to compute det(A'*A), destroying A with the SVD. | |
std::string | string_to_tmpfile (const std::string &dump_string) |
utility to write an input string to a tmpfile in PWD | |
std::string | pyprepro_input (const std::string &template_file, const std::string &preproc_cmd="pyprepro.py") |
run pyprepro on the user-provided input file and return generated tmp output | |
ResultsKeyType | make_key (const StrStrSizet &iterator_id, const std::string &data_name) |
Make a full ResultsKeyType from the passed iterator_id and data_name. | |
MetaDataValueType | make_metadatavalue (StringMultiArrayConstView labels) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (StringMultiArrayConstView cv_labels, StringMultiArrayConstView div_labels, StringMultiArrayConstView drv_labels, const StringArray &resp_labels) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (const StringArray &resp_labels) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (const std::string &) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (const std::string &, const std::string &) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (const std::string &, const std::string &, const std::string &) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (const std::string &, const std::string &, const std::string &, const std::string &) |
create MetaDataValueType from the passed strings | |
MetaDataValueType | make_metadatavalue (StringMultiArrayConstView cv_labels, StringMultiArrayConstView div_labels, StringMultiArrayConstView dsv_labels, StringMultiArrayConstView drv_labels, const StringArray &resp_labels) |
int | generate_system_seed () |
clock microseconds-based random seed in [1, 1000000] More... | |
void | compute_regression_coeffs (const RealMatrix &samples, const RealMatrix &resps, RealMatrix &coeffs, RealVector &cods) |
Compute (non-standardized) linear regression coefficients and return R^2. | |
void | compute_std_regression_coeffs (const RealMatrix &samples, const RealMatrix &resps, RealMatrix &coeffs, RealVector &cods) |
Compute standardized linear regression coefficients. | |
std::istream & | operator>> (std::istream &s, ActiveSet &set) |
std::istream extraction operator for ActiveSet. Calls read(std::istream&). | |
std::ostream & | operator<< (std::ostream &s, const ActiveSet &set) |
std::ostream insertion operator for ActiveSet. Calls write(std::istream&). | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, ActiveSet &set) |
MPIUnpackBuffer extraction operator for ActiveSet. Calls read(MPIUnpackBuffer&). | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const ActiveSet &set) |
MPIPackBuffer insertion operator for ActiveSet. Calls write(MPIPackBuffer&). | |
bool | operator!= (const ActiveSet &set1, const ActiveSet &set2) |
inequality operator for ActiveSet More... | |
std::istream & | operator>> (std::istream &s, Constraints &con) |
std::istream extraction operator for Constraints | |
std::ostream & | operator<< (std::ostream &s, const Constraints &con) |
std::ostream insertion operator for Constraints | |
std::string | re_match (const std::string &token, const boost::regex &re) |
Global utility function to ease migration from CtelRegExp to Boost.Regex. | |
bool | interface_id_compare (const Interface &interface_in, const void *id) |
global comparison function for Interface | |
bool | method_id_compare (const Iterator &iterator, const void *id) |
global comparison function for Iterator | |
bool | model_id_compare (const Model &model, const void *id) |
global comparison function for Model | |
bool | operator== (const Model &m1, const Model &m2) |
equality operator for Envelope is true if same letter instance More... | |
bool | operator!= (const Model &m1, const Model &m2) |
inequality operator for Envelope is true if different letter instance More... | |
template<typename VecT > | |
void | get_initial_values (const Model &model, VecT &values) |
template<typename VecT > | |
bool | get_bounds (const RealVector &lower_source, const RealVector &upper_source, VecT &lower_target, VecT &upper_target, Real big_real_bound_size, Real no_value) |
template<typename VecT > | |
void | get_bounds (const Model &model, VecT &lower_target, VecT &upper_target) |
template<typename SetT , typename VecT > | |
void | get_bounds (const SetT &source_set, VecT &lower_target, VecT &upper_target, int target_offset) |
template<typename OrdinalType , typename ScalarType , typename VectorType2 , typename MaskType , typename SetArray > | |
bool | get_mixed_bounds (const MaskType &mask_set, const SetArray &source_set, const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &lower_source, const Teuchos::SerialDenseVector< OrdinalType, ScalarType > &upper_source, VectorType2 &lower_target, VectorType2 &upper_target, ScalarType bigBoundSize, ScalarType no_value, int target_offset=0) |
template<typename AdapterT > | |
bool | get_variable_bounds (Model &model, Real big_real_bound_size, int big_int_bound_size, typename AdapterT::VecT &lower, typename AdapterT::VecT &upper) |
template<typename RVecT , typename IVecT > | |
int | configure_inequality_constraint_maps (const Model &model, Real big_real_bound_size, CONSTRAINT_TYPE ctype, IVecT &map_indices, RVecT &map_multipliers, RVecT &map_offsets, Real scaling=1.0) |
template<typename RVecT , typename IVecT > | |
void | configure_equality_constraint_maps (Model &model, CONSTRAINT_TYPE ctype, IVecT &indices, size_t index_offset, RVecT &multipliers, RVecT &values, bool make_one_sided) |
template<typename AdapterT > | |
void | get_linear_constraints (Model &model, Real big_real_bound_size, typename AdapterT::VecT &lin_ineq_lower_bnds, typename AdapterT::VecT &lin_ineq_upper_bnds, typename AdapterT::VecT &lin_eq_targets, typename AdapterT::MatT &lin_ineq_coeffs, typename AdapterT::MatT &lin_eq_coeffs) |
template<typename VecT > | |
void | apply_linear_constraints (const Model &model, CONSTRAINT_EQUALITY_TYPE etype, const VecT &in_vals, VecT &values, bool adjoint=false) |
template<typename VecT > | |
void | apply_nonlinear_constraints (const Model &model, CONSTRAINT_EQUALITY_TYPE etype, const VecT &in_vals, VecT &values, bool adjoint=false) |
template<typename VectorType1 , typename VectorType2 , typename SetArray > | |
void | copy_variables (const VectorType1 &source, const BitArray &set_bits, const SetArray &set_vars, VectorType2 &dest, size_t offset, size_t len) |
template<typename VectorType1 , typename VectorType2 , typename SetArray > | |
void | copy_variables (const VectorType1 &source, const SetArray &set_vars, VectorType2 &dest, size_t offset, size_t len) |
template<typename VectorType1 , typename VectorType2 > | |
void | copy_variables (const VectorType1 &source, VectorType2 &dest, const BitArray &int_set_bits, const IntSetArray &set_int_vars, size_t offset, size_t len) |
template<typename AdapterT > | |
void | set_best_responses (typename AdapterT::OptT &optimizer, const Model &model, bool set_objectives, size_t num_user_primary_fns, const std::vector< int > constraint_map_indices, const std::vector< double > constraint_map_multipliers, const std::vector< double > constraint_map_offsets, ResponseArray &response_array) |
template<typename VectorType > | |
void | set_variables (const VectorType &source, Model &model, Variables &vars) |
template<typename VectorType > | |
void | get_variables (Model &model, VectorType &vec) |
template<typename vectorType > | |
void | get_responses (const Model &model, const RealVector &dak_fn_vals, const std::vector< int > constraint_map_indices, const std::vector< double > constraint_map_multipliers, const std::vector< double > constraint_map_offsets, vectorType &f_vec, vectorType &cEqs_vec, vectorType &cIneqs_vec) |
template<typename VecT > | |
void | get_nonlinear_eq_constraints (const Model &model, VecT &values, Real scale, int offset=-1) |
template<typename VecT > | |
void | get_nonlinear_eq_constraints (Model &model, const RealVector &curr_resp_vals, VecT &values, Real scale, int offset=0) |
template<typename VecT > | |
void | get_nonlinear_ineq_constraints (const Model &model, VecT &values) |
template<typename VecT > | |
void | get_nonlinear_bounds (Model &model, VecT &nonlin_ineq_lower, VecT &nonlin_ineq_upper, VecT &nonlin_eq_targets) |
Would like to combine the previous adapter with this one (based on APPSOptimizer and COLINOptimizer) and then see how much more generalization is needed to support other TPLs like JEGA. More... | |
bool | responses_id_compare (const Response &resp, const void *id) |
global comparison function for Response | |
std::istream & | operator>> (std::istream &s, Response &response) |
std::istream extraction operator for Response. Calls read(std::istream&). | |
std::ostream & | operator<< (std::ostream &s, const Response &response) |
std::ostream insertion operator for Response. Calls write(std::ostream&). | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, Response &response) |
MPIUnpackBuffer extraction operator for Response. Calls read(MPIUnpackBuffer&). | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const Response &response) |
MPIPackBuffer insertion operator for Response. Calls write(MPIPackBuffer&). | |
bool | operator!= (const Response &resp1, const Response &resp2) |
inequality operator for Response More... | |
void | set_model_gp_options (Model &model, const String &options_file) |
bool | variables_id_compare (const Variables &vars, const void *id) |
global comparison function for Variables | |
std::istream & | operator>> (std::istream &s, Variables &vars) |
std::istream extraction operator for Variables. | |
std::ostream & | operator<< (std::ostream &s, const Variables &vars) |
std::ostream insertion operator for Variables. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, Variables &vars) |
MPIUnpackBuffer extraction operator for Variables. | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const Variables &vars) |
MPIPackBuffer insertion operator for Variables. | |
bool | operator!= (const Variables &vars1, const Variables &vars2) |
inequality operator for Variables More... | |
template<typename OrdinalType , typename ScalarType1 , typename ScalarType2 , typename ScalarType3 , typename ScalarType4 > | |
void | write_ordered (std::ostream &s, const SizetArray &comp_totals, const Teuchos::SerialDenseVector< OrdinalType, ScalarType1 > &c_vector, const Teuchos::SerialDenseVector< OrdinalType, ScalarType2 > &di_vector, const Teuchos::SerialDenseVector< OrdinalType, ScalarType3 > &ds_vector, const Teuchos::SerialDenseVector< OrdinalType, ScalarType4 > &dr_vector) |
free function to write Variables data vectors in input spec ordering More... | |
template<typename OrdinalType , typename ScalarType1 , typename ScalarType2 , typename ScalarType3 , typename ScalarType4 > | |
void | write_ordered (std::ostream &s, const SizetArray &comp_totals, const Teuchos::SerialDenseVector< OrdinalType, ScalarType1 > &c_vector, const Teuchos::SerialDenseVector< OrdinalType, ScalarType2 > &di_vector, const boost::multi_array< ScalarType3, 1 > &ds_array, const Teuchos::SerialDenseVector< OrdinalType, ScalarType4 > &dr_vector) |
free function to write Variables data vectors in input spec ordering More... | |
template<typename ScalarType > | |
void | write_ordered (std::ostream &s, const SizetArray &comp_totals, const std::vector< ScalarType > &c_array, const std::vector< ScalarType > &di_array, const std::vector< ScalarType > &ds_array, const std::vector< ScalarType > &dr_array) |
free function to write Variables data vectors in input spec ordering | |
void | size_and_fill (const SharedVariablesData &svd, size_t array_size, VariablesArray &vars_array) |
Reinitialize var_array to contain array_size freshly constructed Variables, sharing provided SVD. | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const DataEnvironment &data) |
MPIPackBuffer insertion operator for DataEnvironment. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, DataEnvironment &data) |
MPIUnpackBuffer extraction operator for DataEnvironment. | |
std::ostream & | operator<< (std::ostream &s, const DataEnvironment &data) |
std::ostream insertion operator for DataEnvironment | |
String | interface_enum_to_string (unsigned short interface_type) |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const DataInterface &data) |
MPIPackBuffer insertion operator for DataInterface. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, DataInterface &data) |
MPIUnpackBuffer extraction operator for DataInterface. | |
std::ostream & | operator<< (std::ostream &s, const DataInterface &data) |
std::ostream insertion operator for DataInterface | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const DataMethod &data) |
MPIPackBuffer insertion operator for DataMethod. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, DataMethod &data) |
MPIUnpackBuffer extraction operator for DataMethod. | |
std::ostream & | operator<< (std::ostream &s, const DataMethod &data) |
std::ostream insertion operator for DataMethod | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const DataModel &data) |
MPIPackBuffer insertion operator for DataModel. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, DataModel &data) |
MPIUnpackBuffer extraction operator for DataModel. | |
std::ostream & | operator<< (std::ostream &s, const DataModel &data) |
std::ostream insertion operator for DataModel | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const DataResponses &data) |
MPIPackBuffer insertion operator for DataResponses. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, DataResponses &data) |
MPIUnpackBuffer extraction operator for DataResponses. | |
std::ostream & | operator<< (std::ostream &s, const DataResponses &data) |
std::ostream insertion operator for DataResponses | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const DataVariables &data) |
MPIPackBuffer insertion operator for DataVariables. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, DataVariables &data) |
MPIUnpackBuffer extraction operator for DataVariables. | |
std::ostream & | operator<< (std::ostream &s, const DataVariables &data) |
std::ostream insertion operator for DataVariables | |
int | dlsolver_option (Opt_Info *) |
RealVector const * | continuous_lower_bounds (Optimizer1 *o) |
RealVector const * | continuous_upper_bounds (Optimizer1 *o) |
RealVector const * | nonlinear_ineq_constraint_lower_bounds (Optimizer1 *o) |
RealVector const * | nonlinear_ineq_constraint_upper_bounds (Optimizer1 *o) |
RealVector const * | nonlinear_eq_constraint_targets (Optimizer1 *o) |
RealVector const * | linear_ineq_constraint_lower_bounds (Optimizer1 *o) |
RealVector const * | linear_ineq_constraint_upper_bounds (Optimizer1 *o) |
RealVector const * | linear_eq_constraint_targets (Optimizer1 *o) |
RealMatrix const * | linear_ineq_constraint_coeffs (Optimizer1 *o) |
RealMatrix const * | linear_eq_constraint_coeffs (Optimizer1 *o) |
void | ComputeResponses (Optimizer1 *o, int mode, int n, double *x) |
void | GetFuncs (Optimizer1 *o, int m0, int m1, double *f) |
void | GetGrads (Optimizer1 *o, int m0, int m1, int n, int is, int js, double *g) |
void | GetContVars (Optimizer1 *o, int n, double *x) |
void | SetBestContVars (Optimizer1 *o, int n, double *x) |
void | SetBestRespFns (Optimizer1 *o, int n, double *x) |
void * | dl_constructor (Optimizer1 *, Dakota_funcs *, dl_core_run_t *, dl_destructor_t *) |
static RealVector const * | continuous_lower_bounds1 (Optimizer1 *o) |
static RealVector const * | continuous_upper_bounds1 (Optimizer1 *o) |
static RealVector const * | nonlinear_ineq_constraint_lower_bounds1 (Optimizer1 *o) |
static RealVector const * | nonlinear_ineq_constraint_upper_bounds1 (Optimizer1 *o) |
static RealVector const * | nonlinear_eq_constraint_targets1 (Optimizer1 *o) |
static RealVector const * | linear_ineq_constraint_lower_bounds1 (Optimizer1 *o) |
static RealVector const * | linear_ineq_constraint_upper_bounds1 (Optimizer1 *o) |
static RealVector const * | linear_eq_constraint_targets1 (Optimizer1 *o) |
static RealMatrix const * | linear_eq_constraint_coeffs1 (Optimizer1 *o) |
static RealMatrix const * | linear_ineq_constraint_coeffs1 (Optimizer1 *o) |
static void | ComputeResponses1 (Optimizer1 *o, int mode, int n, double *x) |
static void | GetFuncs1 (Optimizer1 *o, int m0, int m1, double *f) |
static void | GetGrads1 (Optimizer1 *o, int m0, int m1, int n, int is, int js, double *g) |
static void | GetContVars1 (Optimizer1 *o, int n, double *x) |
static void | SetBestContVars1 (Optimizer1 *o, int n, double *x) |
static void | SetBestDiscVars1 (Optimizer1 *o, int n, int *x) |
static void | SetBestRespFns1 (Optimizer1 *o, int n, double *x) |
static double | Get_Real1 (Optimizer1 *o, const char *name) |
static int | Get_Int1 (Optimizer1 *o, const char *name) |
static bool | Get_Bool1 (Optimizer1 *o, const char *name) |
DOTOptimizer * | new_DOTOptimizer (ProblemDescDB &problem_db) |
DOTOptimizer * | new_DOTOptimizer (Model &model) |
DOTOptimizer * | new_DOTOptimizer (ProblemDescDB &problem_db, Model &model) |
void | copy_field_data (const RealVector &fn_vals, RealMatrix &fn_grad, const RealSymMatrixArray &fn_hess, size_t offset, size_t num_fns, Response &response) |
void | copy_field_data (const RealVector &fn_vals, RealMatrix &fn_grad, const RealSymMatrixArray &fn_hess, size_t offset, size_t num_fns, short total_asv, Response &response) |
void | interpolate_simulation_field_data (const Response &sim_resp, const RealMatrix &exp_coords, size_t field_num, short total_asv, size_t interp_resp_offset, Response &interp_resp) |
void | linear_interpolate_1d (const RealMatrix &build_pts, const RealVector &build_vals, const RealMatrix &build_grads, const RealSymMatrixArray &build_hessians, const RealMatrix &pred_pts, RealVector &pred_vals, RealMatrix &pred_grads, RealSymMatrixArray &pred_hessians) |
Returns the value of at 1D function f and its gradient and hessians (if available) at the points of vector pred_pts using linear interpolation. The vector build_pts specifies the coordinates of the underlying interval at which the values (build_vals) of the function f are known. The length of output pred_vals is equal to the length of pred_pts. This function assumes the build_pts is in ascending order. | |
void | symmetric_eigenvalue_decomposition (const RealSymMatrix &matrix, RealVector &eigenvalues, RealMatrix &eigenvectors) |
Computes the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. More... | |
template<typename O , typename T > | |
int | binary_search (T target, Teuchos::SerialDenseVector< O, T > &data) |
find the interval containing a target value. This function assumes the data is in ascending order. | |
Real | getdist (const RealVector &x1, const RealVector &x2) |
Real | mindist (const RealVector &x, const RealMatrix &xset, int except) |
Real | mindistindx (const RealVector &x, const RealMatrix &xset, const IntArray &indx) |
Real | getRmax (const RealMatrix &xset) |
int | start_grid_computing (char *analysis_driver_script, char *params_file, char *results_file) |
int | stop_grid_computing () |
int | perform_analysis (char *iteration_num) |
int | length (const StringMultiArrayConstView &vec) |
Return the length of a StringMultiArrayConstView. | |
H5::DataType | h5_file_dtype (const short &) |
Return the HDF5 datatype to store a short. | |
H5::DataType | h5_file_dtype (const int &) |
Return the HDF5 datatype to store a int. | |
H5::DataType | h5_file_dtype (const unsigned int &) |
H5::DataType | h5_file_dtype (const unsigned long &) |
H5::DataType | h5_file_dtype (const unsigned long long &) |
H5::DataType | h5_file_dtype (const Real &) |
Return the HDF5 datatype to store a Real. | |
H5::DataType | h5_file_dtype (const char *) |
Return the HDF5 datatype to store a string. | |
H5::DataType | h5_file_dtype (const ResultsOutputType t) |
Overloads for ResultsOutputType (used when creating empty datasets) | |
H5::DataType | h5_file_dtype (const String &) |
Return the HDF5 datatype to store a string. | |
H5::DataType | h5_mem_dtype (const Real &) |
Return the HDF5 datatype to read a Real in memory. | |
H5::DataType | h5_mem_dtype (const short &) |
Return the HDF5 datatype to read a short in memory. | |
H5::DataType | h5_mem_dtype (const int &) |
Return the HDF5 datatype to read an int in memory. | |
H5::DataType | h5_mem_dtype (const unsigned int &) |
Return the HDF5 datatype to read an unsigned int in memory. | |
H5::DataType | h5_mem_dtype (const unsigned long &) |
Return the HDF5 datatype to read an unsigned long (maybe a size_t) in memory. | |
H5::DataType | h5_mem_dtype (const unsigned long long &) |
Return the HDF5 datatype to read an unsigned long long (maybe a size_t) in memory. | |
H5::DataType | h5_mem_dtype (const char *) |
Return the HDF5 datatype to read a string in memory. | |
H5::DataType | h5_mem_dtype (const String &) |
Return the HDF5 datatype to read a string in memory. | |
H5::DataType | h5_mem_dtype (const ResultsOutputType t) |
Overloads for ResultsOutputType (used when creating empty datasets) | |
template<typename T > | |
int | length (const std::vector< T > &vec) |
Return the length of seeral types. | |
template<typename T > | |
int | length (const Teuchos::SerialDenseVector< int, T > &vec) |
Return the length of an SDV. | |
template<typename T > | |
std::vector< const char * > | pointers_to_strings (const T &data) |
Return a vector of pointers to strings. | |
template<typename T > | |
string | asstring (const T &val) |
Creates a string from the argument val using an ostringstream. More... | |
PACKBUF (int, MPI_INT) PACKBUF(u_int | |
MPI_UNSIGNED | PACKBUF (long, MPI_LONG) PACKBUF(u_long |
MPI_UNSIGNED MPI_UNSIGNED_LONG | PACKBUF (long long, MPI_LONG_LONG) PACKBUF(unsigned long long |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG | PACKBUF (short, MPI_SHORT) PACKBUF(u_short |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT | PACKBUF (char, MPI_CHAR) PACKBUF(u_char |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT MPI_UNSIGNED_CHAR | PACKBUF (double, MPI_DOUBLE) PACKBUF(float |
UNPACKBUF (int, MPI_INT) UNPACKBUF(u_int | |
MPI_UNSIGNED | UNPACKBUF (long, MPI_LONG) UNPACKBUF(u_long |
MPI_UNSIGNED MPI_UNSIGNED_LONG | UNPACKBUF (long long, MPI_LONG_LONG) UNPACKBUF(unsigned long long |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG | UNPACKBUF (short, MPI_SHORT) UNPACKBUF(u_short |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT | UNPACKBUF (char, MPI_CHAR) UNPACKBUF(u_char |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT MPI_UNSIGNED_CHAR | UNPACKBUF (double, MPI_DOUBLE) UNPACKBUF(float |
PACKSIZE (int, MPI_INT) PACKSIZE(u_int | |
MPI_UNSIGNED | PACKSIZE (long, MPI_LONG) PACKSIZE(u_long |
MPI_UNSIGNED MPI_UNSIGNED_LONG | PACKSIZE (long long, MPI_LONG_LONG) PACKSIZE(unsigned long long |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG | PACKSIZE (short, MPI_SHORT) PACKSIZE(u_short |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT | PACKSIZE (char, MPI_CHAR) PACKSIZE(u_char |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT MPI_UNSIGNED_CHAR | PACKSIZE (double, MPI_DOUBLE) PACKSIZE(float |
MPI_UNSIGNED MPI_UNSIGNED_LONG MPI_UNSIGNED_LONG_LONG MPI_UNSIGNED_SHORT MPI_UNSIGNED_CHAR MPI_FLOAT int | MPIPackSize (const bool &data, const int num=1) |
return packed size of a bool | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const int &data) |
insert an int | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const u_int &data) |
insert a u_int | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const long &data) |
insert a long | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const u_long &data) |
insert a u_long | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const long long &data) |
insert a long long | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const unsigned long long &data) |
insert a unsigned long long | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const short &data) |
insert a short | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const u_short &data) |
insert a u_short | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const char &data) |
insert a char | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const u_char &data) |
insert a u_char | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const double &data) |
insert a double | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const float &data) |
insert a float | |
MPIPackBuffer & | operator<< (MPIPackBuffer &buff, const bool &data) |
insert a bool | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, int &data) |
extract an int | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, u_int &data) |
extract a u_int | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, long &data) |
extract a long | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, u_long &data) |
extract a u_long | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, long long &data) |
extract a long long | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, unsigned long long &data) |
extract an unsigned long long | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, short &data) |
extract a short | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, u_short &data) |
extract a u_short | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, char &data) |
extract a char | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, u_char &data) |
extract a u_char | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, double &data) |
extract a double | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, float &data) |
extract a float | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &buff, bool &data) |
extract a bool | |
int | MPIPackSize (const int &data, const int num=1) |
return packed size of an int | |
int | MPIPackSize (const u_int &data, const int num=1) |
return packed size of a u_int | |
int | MPIPackSize (const long &data, const int num=1) |
return packed size of a long | |
int | MPIPackSize (const u_long &data, const int num=1) |
return packed size of a u_long | |
int | MPIPackSize (const long long &data, const int num=1) |
return packed size of a long long | |
int | MPIPackSize (const unsigned long long &data, const int num=1) |
return packed size of an unsigned long long | |
int | MPIPackSize (const short &data, const int num=1) |
return packed size of a short | |
int | MPIPackSize (const u_short &data, const int num=1) |
return packed size of a u_short | |
int | MPIPackSize (const char &data, const int num=1) |
return packed size of a char | |
int | MPIPackSize (const u_char &data, const int num=1) |
return packed size of a u_char | |
int | MPIPackSize (const double &data, const int num=1) |
return packed size of a double | |
int | MPIPackSize (const float &data, const int num=1) |
return packed size of a float | |
int | nidr_parse (const char *, FILE *) |
const char ** | arg_list_adjust (const char **, void **) |
int | not_executable (const char *driver_name, const char *tdir) |
static void | scale_chk (StringArray &ST, RealVector &S, const char *what, const char **univ) |
static void | BuildLabels (StringArray *sa, size_t nsa, size_t n1, size_t n2, const char *stub) |
static int | mixed_check (IntSet *S, int n, IntArray *iv, const char *what) |
static void | mixed_check2 (size_t n, IntArray *iv, const char *what) |
static int | wronglen (size_t n, RealVector *V, const char *what) |
static int | wronglen (size_t n, IntVector *V, const char *what) |
static void | Vcopyup (RealVector *V, RealVector *M, size_t i, size_t n) |
static void | Set_rv (RealVector *V, double d, size_t n) |
static void | Set_iv (IntVector *V, int d, size_t n) |
static void | wrong_number (const char *what, const char *kind, size_t nsv, size_t m) |
static void | too_small (const char *kind) |
static void | not_div (const char *kind, size_t nsv, size_t m) |
static void | suppressed (const char *kind, int ndup, int *ip, String *sp, Real *rp) |
static void | bad_initial_ivalue (const char *kind, int val) |
static void | bad_initial_svalue (const char *kind, String val) |
static void | bad_initial_rvalue (const char *kind, Real val) |
static void | Vgen_ContinuousDes (DataVariablesRep *dv, size_t offset) |
static void | Vgen_DiscreteDesRange (DataVariablesRep *dv, size_t offset) |
static void | Vgen_ContinuousState (DataVariablesRep *dv, size_t offset) |
static void | Vgen_DiscreteStateRange (DataVariablesRep *dv, size_t offset) |
static void | Vchk_NormalUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_NormalUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_LognormalUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_LognormalUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_UniformUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_UniformUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_LoguniformUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_LoguniformUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_TriangularUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_TriangularUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_ExponentialUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_ExponentialUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_BetaUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_BetaUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_GammaUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_GammaUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_GumbelUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_GumbelUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_FrechetUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_FrechetUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_WeibullUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_WeibullUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_HistogramBinUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
Check the histogram bin input data, normalize the counts and populate the histogramUncBinPairs map data structure; map keys are guaranteed unique since the abscissas must increase. | |
static void | Vgen_HistogramBinUnc (DataVariablesRep *dv, size_t offset) |
Infer lower/upper bounds for histogram and set initial variable values based on initial_point or moments, snapping to bounds as needed. (Histogram bin doesn't have lower/upper bounds specifcation) | |
static void | Vchk_PoissonUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_PoissonUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_BinomialUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_BinomialUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_NegBinomialUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_NegBinomialUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_GeometricUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_GeometricUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_HyperGeomUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_HyperGeomUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_HistogramPtIntUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
Check the histogram point integer input data, normalize the counts, and populate DataVariables::histogramUncPointIntPairs; map keys are guaranteed unique since the abscissas must increase. | |
static void | Vgen_HistogramPtIntUnc (DataVariablesRep *dv, size_t offset) |
Use the integer-valued point histogram data to initialize the lower, upper, and initial values of the variables, using value closest to mean if no initial point. | |
static void | Vchk_HistogramPtStrUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
Check the histogram point string input data, normalize the counts, and populate DataVariables::histogramUncPointStrPairs; map keys are guaranteed unique since the abscissas must increase (lexicographically) | |
static void | Vgen_HistogramPtStrUnc (DataVariablesRep *dv, size_t offset) |
Use the string-valued point histogram data to initialize the lower, upper, and initial values of the variables, using index closest to mean index if no initial point. | |
static void | Vchk_HistogramPtRealUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
Check the histogram point integer real data, normalize the counts, and populate DataVariables::histogramUncPointRealPairs; map keys are guaranteed unique since the abscissas must increase. | |
static void | Vgen_HistogramPtRealUnc (DataVariablesRep *dv, size_t offset) |
Use the real-valued point histogram data to initialize the lower, upper, and initial values of the variables, using value closest to mean if no initial point. | |
static void | Vchk_ContinuousIntervalUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
Check the continuous interval uncertain input data and populate DataVariables::continuousIntervalUncBasicProbs; map keys (real intervals) are checked for uniqueness because we don't have a theoretically sound way to combine duplicate intervals. | |
static void | Vgen_ContinuousIntervalUnc (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteIntervalUnc (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
Check the discrete interval uncertain input data and populate DataVariables::discreteIntervalUncBasicProbs; map keys (integer intervals) are checked for uniqueness because we don't have a theoretically sound way to combine duplicate intervals. | |
static void | Vgen_DiscreteIntervalUnc (DataVariablesRep *dv, size_t offset) |
static bool | check_set_keys (size_t num_v, size_t ds_len, const char *kind, IntArray *input_nds, int &avg_num_ds) |
validate the number of set elements (values) given the number of variables and an optional apportionment with elements_per_variable; return the average number per variable if equally distributed | |
static void | Vchk_DIset (size_t num_v, const char *kind, IntArray *input_ndsi, IntVector *input_dsi, IntSetArray &dsi_all, IntVector &dsi_init_pt) |
check discrete sets of integers (design and state variables); error if a duplicate value is specified error if not ordered to prevent user confusion | |
static void | Vchk_DIset (size_t num_v, const char *kind, IntArray *input_ndsi, IntVector *input_dsi, RealVector *input_dsip, IntRealMapArray &dsi_vals_probs, IntVector &dsi_init_pt) |
check discrete sets of integers (uncertain variables); error if a duplicate value is specified error if not ordered to prevent user confusion | |
static void | Vchk_DSset (size_t num_v, const char *kind, IntArray *input_ndss, StringArray *input_dss, StringSetArray &dss_all, StringArray &dss_init_pt) |
static void | Vchk_DSset (size_t num_v, const char *kind, IntArray *input_ndss, StringArray *input_dss, RealVector *input_dssp, StringRealMapArray &dss_vals_probs, StringArray &dss_init_pt) |
static void | Vchk_DRset (size_t num_v, const char *kind, IntArray *input_ndsr, RealVector *input_dsr, RealSetArray &dsr_all, RealVector &dsr_init_pt) |
static void | Vchk_DRset (size_t num_v, const char *kind, IntArray *input_ndsr, RealVector *input_dsr, RealVector *input_dsrp, RealRealMapArray &dsr_vals_probs, RealVector &dsr_init_pt) |
static void | Vchk_Adjacency (size_t num_v, const char *kind, const IntArray &num_e, const IntVector &input_ddsa, RealMatrixArray &dda_all) |
static bool | check_LUV_size (size_t num_v, IntVector &L, IntVector &U, IntVector &V, bool aggregate_LUV, size_t offset) |
static bool | check_LUV_size (size_t num_v, StringArray &L, StringArray &U, StringArray &V, bool aggregate_LUV, size_t offset) |
static bool | check_LUV_size (size_t num_v, RealVector &L, RealVector &U, RealVector &V, bool aggregate_LUV, size_t offset) |
template<typename T > | |
T | midpoint (T a, T b) |
Compute the midpoint of floating-point or integer range [a, b] (a <= b), possibly indices, rounding toward a if needed. (Eventually replace with C++20 midpoint, which is more general.) | |
static size_t | mid_or_next_lower_index (const size_t num_inds) |
get the middle or left-of-middle index among indices [0,num_inds-1] | |
static void | Vgen_DIset (size_t num_v, IntSetArray &sets, IntVector &L, IntVector &U, IntVector &V, bool aggregate_LUV=false, size_t offset=0) |
static void | Vgen_DSset (size_t num_v, StringSetArray &sets, StringArray &L, StringArray &U, StringArray &V, bool aggregate_LUV=false, size_t offset=0) |
generate lower, upper, and initial point for string-valued sets | |
static void | Vgen_DIset (size_t num_v, IntRealMapArray &vals_probs, IntVector &IP, IntVector &L, IntVector &U, IntVector &V, bool aggregate_LUV=false, size_t offset=0) |
static void | Vgen_DRset (size_t num_v, RealSetArray &sets, RealVector &L, RealVector &U, RealVector &V, bool aggregate_LUV=false, size_t offset=0) |
static void | Vgen_DRset (size_t num_v, RealRealMapArray &vals_probs, RealVector &IP, RealVector &L, RealVector &U, RealVector &V, bool aggregate_LUV=false, size_t offset=0) |
static void | Vgen_DSset (size_t num_v, StringRealMapArray &vals_probs, StringArray &IP, StringArray &L, StringArray &U, StringArray &V, bool aggregate_LUV=false, size_t offset=0) |
static void | Vchk_DiscreteDesSetInt (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteDesSetInt (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteDesSetStr (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteDesSetStr (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteDesSetReal (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteDesSetReal (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteUncSetInt (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteUncSetInt (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteUncSetStr (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteUncSetStr (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteUncSetReal (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteUncSetReal (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteStateSetInt (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteStateSetInt (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteStateSetStr (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteStateSetStr (DataVariablesRep *dv, size_t offset) |
static void | Vchk_DiscreteStateSetReal (DataVariablesRep *dv, size_t offset, Var_Info *vi) |
static void | Vgen_DiscreteStateSetReal (DataVariablesRep *dv, size_t offset) |
static const char * | Var_Name (StringArray *sa, char *buf, size_t i) |
static void | Var_RealBoundIPCheck (DataVariablesRep *dv, Var_rcheck *b) |
For real-valued variables: verify lengths of bounds and initial point, validate bounds and adjust initial point to bounds. | |
static void | Var_IntBoundIPCheck (DataVariablesRep *dv, Var_icheck *ib) |
For integer-valued variables: verify lengths of bounds and initial point, validate bounds and initial point against bounds. | |
static void | flatten_rva (RealVectorArray *rva, RealVector **prv) |
static void | flatten_iva (IntVectorArray *iva, IntVector **piv) |
static void | flatten_rsm (RealSymMatrix *rsm, RealVector **prv) |
static void | flatten_rsa (RealSetArray *rsa, RealVector **prv) |
static void | flatten_ssa (StringSetArray *ssa, StringArray **psa) |
static void | flatten_isa (IntSetArray *isa, IntVector **piv) |
static void | flatten_rrma_keys (RealRealMapArray *rrma, RealVector **prv) |
static void | flatten_rrma_values (RealRealMapArray *rrma, RealVector **prv) |
static void | flatten_irma_keys (IntRealMapArray *irma, IntVector **piv) |
static void | flatten_irma_values (IntRealMapArray *irma, RealVector **prv) |
static void | flatten_srma_keys (StringRealMapArray *srma, StringArray **psa) |
static void | flatten_srma_values (StringRealMapArray *srma, RealVector **prv) |
static void | flatten_real_intervals (const RealRealPairRealMapArray &rrprma, RealVector **probs, RealVector **lb, RealVector **ub) |
Flatten real-valued interval uncertain variable intervals and probabilities back into separate arrays. | |
static void | flatten_int_intervals (const IntIntPairRealMapArray &iiprma, RealVector **probs, IntVector **lb, IntVector **ub) |
Flatten integer-valued interval uncertain variable intervals and probabilities back into separate arrays. | |
static void | var_iulbl (const char *keyname, Values *val, VarLabel *vl) |
static Iface_mp_Rlit | MP3 (failAction, recoveryFnVals, recover) |
static Iface_mp_ilit | MP3 (failAction, retryLimit, retry) |
static Iface_mp_lit | MP2 (failAction, abort) |
static Iface_mp_lit | MP2 (failAction, continuation) |
static Iface_mp_type | MP2s (analysisScheduling, MASTER_SCHEDULING) |
static Iface_mp_type | MP2s (analysisScheduling, PEER_SCHEDULING) |
static Iface_mp_type | MP2s (evalScheduling, MASTER_SCHEDULING) |
static Iface_mp_type | MP2s (evalScheduling, PEER_DYNAMIC_SCHEDULING) |
static Iface_mp_type | MP2s (evalScheduling, PEER_STATIC_SCHEDULING) |
static Iface_mp_type | MP2s (asynchLocalEvalScheduling, DYNAMIC_SCHEDULING) |
static Iface_mp_type | MP2s (asynchLocalEvalScheduling, STATIC_SCHEDULING) |
static Iface_mp_utype | MP2s (interfaceType, TEST_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, FORK_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, GRID_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, LEGACY_PYTHON_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, MATLAB_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, PLUGIN_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, PYTHON_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, SCILAB_INTERFACE) |
static Iface_mp_utype | MP2s (interfaceType, SYSTEM_INTERFACE) |
static Iface_mp_utype | MP2s (resultsFileFormat, LABELED_RESULTS) |
static String | MP_ (algebraicMappings) |
static String | MP_ (idInterface) |
static String | MP_ (inputFilter) |
static String | MP_ (outputFilter) |
static String | MP_ (parametersFile) |
static String | MP_ (pluginLibraryPath) |
static String | MP_ (resultsFile) |
static String | MP_ (workDir) |
static String2DArray | MP_ (analysisComponents) |
static StringArray | MP_ (analysisDrivers) |
static StringArray | MP_ (copyFiles) |
static StringArray | MP_ (linkFiles) |
static bool | MP_ (activeSetVectorFlag) |
static bool | MP_ (allowExistingResultsFlag) |
static bool | MP_ (apreproFlag) |
static bool | MP_ (asynchFlag) |
static bool | MP_ (batchEvalFlag) |
static bool | MP_ (dirSave) |
static bool | MP_ (dirTag) |
static bool | MP_ (evalCacheFlag) |
static bool | MP_ (fileSaveFlag) |
static bool | MP_ (fileTagFlag) |
static bool | MP_ (nearbyEvalCacheFlag) |
static bool | MP_ (numpyFlag) |
static bool | MP_ (restartFileFlag) |
static bool | MP_ (templateReplace) |
static bool | MP_ (useWorkdir) |
static bool | MP_ (verbatimFlag) |
static int | MP_ (analysisServers) |
static int | MP_ (asynchLocalAnalysisConcurrency) |
static int | MP_ (asynchLocalEvalConcurrency) |
static int | MP_ (evalServers) |
static int | MP_ (procsPerAnalysis) |
static int | MP_ (procsPerEval) |
static Real | MP_ (nearbyEvalCacheTol) |
static IntVector | MP_ (primeBase) |
static IntVector | MP_ (refineSamples) |
static IntVector | MP_ (sequenceLeap) |
static IntVector | MP_ (sequenceStart) |
static IntVector | MP_ (stepsPerVariable) |
static Method_mp_ilit2 | MP3 (replacementType, numberRetained, chc) |
static Method_mp_ilit2 | MP3 (replacementType, numberRetained, elitist) |
static Method_mp_ilit2 | MP3 (replacementType, numberRetained, random) |
static Method_mp_ilit2z | MP3 (crossoverType, numCrossPoints, multi_point_binary) |
static Method_mp_ilit2z | MP3 (crossoverType, numCrossPoints, multi_point_parameterized_binary) |
static Method_mp_ilit2z | MP3 (crossoverType, numCrossPoints, multi_point_real) |
static Method_mp_lit | MP2 (batchSelectionType, naive) |
static Method_mp_lit | MP2 (batchSelectionType, distance) |
static Method_mp_lit | MP2 (batchSelectionType, topology) |
static Method_mp_lit | MP2 (batchSelectionType, cl) |
static Method_mp_lit | MP2 (boxDivision, all_dimensions) |
static Method_mp_lit | MP2 (boxDivision, major_dimension) |
static Method_mp_lit | MP2 (convergenceType, average_fitness_tracker) |
static Method_mp_lit | MP2 (convergenceType, best_fitness_tracker) |
static Method_mp_lit | MP2 (convergenceType, metric_tracker) |
static Method_mp_lit | MP2 (crossoverType, blend) |
static Method_mp_lit | MP2 (crossoverType, two_point) |
static Method_mp_lit | MP2 (crossoverType, uniform) |
static Method_mp_lit | MP2 (dataDistCovInputType, diagonal) |
static Method_mp_lit | MP2 (dataDistCovInputType, matrix) |
static Method_mp_lit | MP2 (exploratoryMoves, adaptive) |
static Method_mp_lit | MP2 (exploratoryMoves, multi_step) |
static Method_mp_lit | MP2 (exploratoryMoves, simple) |
static Method_mp_lit | MP2 (fitnessType, domination_count) |
static Method_mp_lit | MP2 (fitnessType, layer_rank) |
static Method_mp_lit | MP2 (fitnessType, linear_rank) |
static Method_mp_lit | MP2 (fitnessType, merit_function) |
static Method_mp_lit | MP2 (fitnessType, proportional) |
static Method_mp_lit | MP2 (fitnessMetricType, predicted_variance) |
static Method_mp_lit | MP2 (fitnessMetricType, distance) |
static Method_mp_lit | MP2 (fitnessMetricType, gradient) |
static Method_mp_lit | MP2 (initializationType, random) |
static Method_mp_lit | MP2 (initializationType, unique_random) |
static Method_mp_lit | MP2 (lipschitzType, global) |
static Method_mp_lit | MP2 (lipschitzType, local) |
static Method_mp_lit | MP2 (meritFunction, merit_max) |
static Method_mp_lit | MP2 (meritFunction, merit_max_smooth) |
static Method_mp_lit | MP2 (meritFunction, merit1) |
static Method_mp_lit | MP2 (meritFunction, merit1_smooth) |
static Method_mp_lit | MP2 (meritFunction, merit2) |
static Method_mp_lit | MP2 (meritFunction, merit2_smooth) |
static Method_mp_lit | MP2 (meritFunction, merit2_squared) |
static Method_mp_lit | MP2 (mcmcType, adaptive_metropolis) |
static Method_mp_lit | MP2 (mcmcType, delayed_rejection) |
static Method_mp_lit | MP2 (mcmcType, dram) |
static Method_mp_lit | MP2 (mcmcType, metropolis_hastings) |
static Method_mp_lit | MP2 (mcmcType, multilevel) |
static Method_mp_lit | MP2 (modelDiscrepancyType, global_kriging) |
static Method_mp_lit | MP2 (modelDiscrepancyType, global_polynomial) |
static Method_mp_lit | MP2 (mutationType, bit_random) |
static Method_mp_lit | MP2 (mutationType, offset_cauchy) |
static Method_mp_lit | MP2 (mutationType, offset_normal) |
static Method_mp_lit | MP2 (mutationType, offset_uniform) |
static Method_mp_lit | MP2 (mutationType, replace_uniform) |
static Method_mp_lit | MP2 (patternBasis, coordinate) |
static Method_mp_lit | MP2 (patternBasis, simplex) |
static Method_mp_lit | MP2 (pointReuse, all) |
static Method_mp_lit | MP2 (proposalCovInputType, diagonal) |
static Method_mp_lit | MP2 (proposalCovInputType, matrix) |
static Method_mp_lit | MP2 (proposalCovType, derivatives) |
static Method_mp_lit | MP2 (proposalCovType, prior) |
static Method_mp_lit | MP2 (proposalCovType, user) |
static Method_mp_lit | MP2 (reliabilityIntegration, first_order) |
static Method_mp_lit | MP2 (reliabilityIntegration, second_order) |
static Method_mp_lit | MP2 (replacementType, elitist) |
static Method_mp_lit | MP2 (replacementType, favor_feasible) |
static Method_mp_lit | MP2 (replacementType, roulette_wheel) |
static Method_mp_lit | MP2 (replacementType, unique_roulette_wheel) |
static Method_mp_lit | MP2 (rngName, mt19937) |
static Method_mp_lit | MP2 (rngName, rnum2) |
static Method_mp_lit | MP2 (searchMethod, gradient_based_line_search) |
static Method_mp_lit | MP2 (searchMethod, tr_pds) |
static Method_mp_lit | MP2 (searchMethod, trust_region) |
static Method_mp_lit | MP2 (searchMethod, value_based_line_search) |
static Method_mp_lit | MP2 (trialType, grid) |
static Method_mp_lit | MP2 (trialType, halton) |
static Method_mp_lit | MP2 (trialType, random) |
static Method_mp_lit | MP2 (useSurrogate, inform_search) |
static Method_mp_lit | MP2 (useSurrogate, optimize) |
static Method_mp_litc | MP3 (crossoverType, crossoverRate, shuffle_random) |
static Method_mp_litc | MP3 (crossoverType, crossoverRate, null_crossover) |
static Method_mp_litc | MP3 (mutationType, mutationRate, null_mutation) |
static Method_mp_litc | MP3 (mutationType, mutationRate, offset_cauchy) |
static Method_mp_litc | MP3 (mutationType, mutationRate, offset_normal) |
static Method_mp_litc | MP3 (mutationType, mutationRate, offset_uniform) |
static Method_mp_litc | MP3 (replacementType, fitnessLimit, below_limit) |
static Method_mp_litrv | MP3 (nichingType, nicheVector, distance) |
static Method_mp_litrv | MP3 (nichingType, nicheVector, max_designs) |
static Method_mp_litrv | MP3 (nichingType, nicheVector, radial) |
static Method_mp_litrv | MP3 (postProcessorType, distanceVector, distance_postprocessor) |
static Method_mp_slit2 | MP3 (initializationType, flatFile, flat_file) |
static Method_mp_utype_lit | MP3s (methodName, dlDetails, DL_SOLVER) |
static Real | MP_ (absConvTol) |
static Real | MP_ (centeringParam) |
static Real | MP_ (collocationRatio) |
static Real | MP_ (collocRatioTermsOrder) |
static Real | MP_ (constraintPenalty) |
static Real | MP_ (constrPenalty) |
static Real | MP_ (constraintTolerance) |
static Real | MP_ (contractFactor) |
static Real | MP_ (contractStepLength) |
static Real | MP_ (convergenceTolerance) |
static Real | MP_ (crossoverRate) |
static Real | MP_ (falseConvTol) |
static Real | MP_ (functionPrecision) |
static Real | MP_ (globalBalanceParam) |
static Real | MP_ (gradientTolerance) |
static Real | MP_ (hybridLSProb) |
static Real | MP_ (grThreshold) |
static Real | MP_ (initDelta) |
static Real | MP_ (initMeshSize) |
static Real | MP_ (initStepLength) |
static Real | MP_ (initTRRadius) |
static Real | MP_ (lineSearchTolerance) |
static Real | MP_ (localBalanceParam) |
static Real | MP_ (maxBoxSize) |
static Real | MP_ (maxStep) |
static Real | MP_ (minBoxSize) |
static Real | MP_ (minMeshSize) |
static Real | MP_ (multilevEstimatorRate) |
static Real | MP_ (mutationRate) |
static Real | MP_ (mutationScale) |
static Real | MP_ (percentVarianceExplained) |
static Real | MP_ (priorPropCovMult) |
static Real | MP_ (refinementRate) |
static Real | MP_ (regressionL2Penalty) |
static Real | MP_ (shrinkagePercent) |
static Real | MP_ (singConvTol) |
static Real | MP_ (singRadius) |
static Real | MP_ (smoothFactor) |
static Real | MP_ (solnTarget) |
static Real | MP_ (solverRoundingTol) |
static Real | MP_ (solverTol) |
static Real | MP_ (statsRoundingTol) |
static Real | MP_ (stepLenToBoundary) |
static Real | MP_ (threshDelta) |
static Real | MP_ (threshStepLength) |
static Real | MP_ (trustRegionContract) |
static Real | MP_ (trustRegionContractTrigger) |
static Real | MP_ (trustRegionExpand) |
static Real | MP_ (trustRegionExpandTrigger) |
static Real | MP_ (trustRegionMinSize) |
static Real | MP_ (vbdDropTolerance) |
static Real | MP_ (volBoxSize) |
static Real | MP_ (vns) |
static Real | MP_ (wilksConfidenceLevel) |
static Real | MP_ (tiCoverage) |
static Real | MP_ (tiConfidenceLevel) |
static Real | MP_ (xConvTol) |
static RealVector | MP_ (anisoDimPref) |
static RealVector | MP_ (concurrentParameterSets) |
static RealVector | MP_ (dataDistCovariance) |
static RealVector | MP_ (dataDistMeans) |
static RealVector | MP_ (finalPoint) |
static RealVector | MP_ (hyperPriorAlphas) |
static RealVector | MP_ (hyperPriorBetas) |
static RealVector | MP_ (listOfPoints) |
static RealVector | MP_ (predictionConfigList) |
static RealVector | MP_ (proposalCovData) |
static RealVector | MP_ (regressionNoiseTol) |
static RealVector | MP_ (scalarizationRespCoeffs) |
static RealVector | MP_ (stepVector) |
static RealVector | MP_ (trustRegionInitSize) |
static RealVectorArray | MP_ (genReliabilityLevels) |
static RealVectorArray | MP_ (probabilityLevels) |
static RealVectorArray | MP_ (reliabilityLevels) |
static RealVectorArray | MP_ (responseLevels) |
static unsigned short | MP_ (adaptedBasisAdvancements) |
static unsigned short | MP_ (cubIntOrder) |
static unsigned short | MP_ (dagDepthLimit) |
static unsigned short | MP_ (expansionOrder) |
static unsigned short | MP_ (kickOrder) |
static unsigned short | MP_ (maxCVOrderCandidates) |
static unsigned short | MP_ (maxOrder) |
static unsigned short | MP_ (quadratureOrder) |
static unsigned short | MP_ (softConvLimit) |
static unsigned short | MP_ (sparseGridLevel) |
static unsigned short | MP_ (startOrder) |
static unsigned short | MP_ (vbdOrder) |
static unsigned short | MP_ (wilksOrder) |
static SizetArray | MP_ (collocationPointsSeq) |
static SizetArray | MP_ (expansionSamplesSeq) |
static SizetArray | MP_ (pilotSamples) |
static SizetArray | MP_ (randomSeedSeq) |
static SizetArray | MP_ (startRankSeq) |
static UShortArray | MP_ (expansionOrderSeq) |
static UShortArray | MP_ (quadratureOrderSeq) |
static UShortArray | MP_ (sparseGridLevelSeq) |
static UShortArray | MP_ (startOrderSeq) |
static UShortArray | MP_ (tensorGridOrder) |
static UShortArray | MP_ (varPartitions) |
static String | MP_ (advancedOptionsFilename) |
static String | MP_ (betaSolverName) |
static String | MP_ (dataDistFile) |
static String | MP_ (displayFormat) |
static String | MP_ (exportApproxPtsFile) |
static String | MP_ (exportCorrModelFile) |
static String | MP_ (exportCorrVarFile) |
static String | MP_ (exportDiscrepFile) |
static String | MP_ (exportExpansionFile) |
static String | MP_ (exportMCMCPtsFile) |
static String | MP_ (historyFile) |
static String | MP_ (hybridGlobalMethodName) |
static String | MP_ (hybridGlobalMethodPointer) |
static String | MP_ (hybridGlobalModelPointer) |
static String | MP_ (hybridLocalMethodName) |
static String | MP_ (hybridLocalMethodPointer) |
static String | MP_ (hybridLocalModelPointer) |
static String | MP_ (idMethod) |
static String | MP_ (importApproxPtsFile) |
static String | MP_ (importBuildPtsFile) |
static String | MP_ (importCandPtsFile) |
static String | MP_ (importExpansionFile) |
static String | MP_ (importPredConfigs) |
static String | MP_ (logFile) |
static String | MP_ (lowFidModelPointer) |
static String | MP_ (modelExportPrefix) |
static String | MP_ (modelPointer) |
static String | MP_ (posteriorDensityExportFilename) |
static String | MP_ (posteriorSamplesExportFilename) |
static String | MP_ (posteriorSamplesImportFilename) |
static String | MP_ (proposalCovFile) |
static String | MP_ (pstudyFilename) |
static String | MP_ (subMethodName) |
static String | MP_ (subMethodPointer) |
static String | MP_ (subModelPointer) |
static StringArray | MP_ (hybridMethodNames) |
static StringArray | MP_ (hybridMethodPointers) |
static StringArray | MP_ (hybridModelPointers) |
static StringArray | MP_ (miscOptions) |
static bool | MP_ (adaptExpDesign) |
static bool | MP_ (adaptOrder) |
static bool | MP_ (adaptPosteriorRefine) |
static bool | MP_ (adaptRank) |
static bool | MP_ (backfillFlag) |
static bool | MP_ (calModelDiscrepancy) |
static bool | MP_ (chainDiagnostics) |
static bool | MP_ (chainDiagnosticsCI) |
static bool | MP_ (constantPenalty) |
static bool | MP_ (crossValidation) |
static bool | MP_ (crossValidNoiseOnly) |
static bool | MP_ (dOptimal) |
static bool | MP_ (evaluatePosteriorDensity) |
static bool | MP_ (expansionFlag) |
static bool | MP_ (exportSampleSeqFlag) |
static bool | MP_ (exportSurrogate) |
static bool | MP_ (fixedSeedFlag) |
static bool | MP_ (fixedSequenceFlag) |
static bool | MP_ (generatePosteriorSamples) |
static bool | MP_ (gpmsaNormalize) |
static bool | MP_ (importApproxActive) |
static bool | MP_ (importBuildActive) |
static bool | MP_ (latinizeFlag) |
static bool | MP_ (logitTransform) |
static bool | MP_ (mainEffectsFlag) |
static bool | MP_ (methodScaling) |
static bool | MP_ (methodUseDerivsFlag) |
static bool | MP_ (modelEvidence) |
static bool | MP_ (modelEvidLaplace) |
static bool | MP_ (modelEvidMC) |
static bool | MP_ (mutualInfoKSG2) |
static bool | MP_ (mutationAdaptive) |
static bool | MP_ (normalizedCoeffs) |
static bool | MP_ (pcaFlag) |
static bool | MP_ (posteriorStatsKL) |
static bool | MP_ (posteriorStatsKDE) |
static bool | MP_ (posteriorStatsMutual) |
static bool | MP_ (printPopFlag) |
static bool | MP_ (pstudyFileActive) |
static bool | MP_ (randomizeOrderFlag) |
static bool | MP_ (regressDiag) |
static bool | MP_ (relativeConvMetric) |
static bool | MP_ (respScalingFlag) |
static bool | MP_ (showAllEval) |
static bool | MP_ (showMiscOptions) |
static bool | MP_ (speculativeFlag) |
static bool | MP_ (standardizedSpace) |
static bool | MP_ (stdRegressionCoeffs) |
static bool | MP_ (toleranceIntervalsFlag) |
static bool | MP_ (surrBasedGlobalReplacePts) |
static bool | MP_ (surrBasedLocalLayerBypass) |
static bool | MP_ (tensorGridFlag) |
static bool | MP_ (truthPilotConstraint) |
static bool | MP_ (useTargetVarianceOptimizationFlag) |
static bool | MP_ (vbdFlag) |
static bool | MP_ (volQualityFlag) |
static bool | MP_ (wilksFlag) |
static short | MP_ (polynomialOrder) |
static int | MP_ (batchSize) |
static int | MP_ (batchSizeExplore) |
static int | MP_ (buildSamples) |
static int | MP_ (burnInSamples) |
static int | MP_ (chainSamples) |
static int | MP_ (concurrentRandomJobs) |
static int | MP_ (contractAfterFail) |
static int | MP_ (covarianceType) |
static int | MP_ (crossoverChainPairs) |
static int | MP_ (emulatorOrder) |
static int | MP_ (expandAfterSuccess) |
static int | MP_ (evidenceSamples) |
static int | MP_ (iteratorServers) |
static int | MP_ (jumpStep) |
static int | MP_ (maxCrossIterations) |
static int | MP_ (maxHifiEvals) |
static int | MP_ (mutationRange) |
static int | MP_ (neighborOrder) |
static int | MP_ (newSolnsGenerated) |
static int | MP_ (numChains) |
static int | MP_ (numCR) |
static int | MP_ (numSamples) |
static int | MP_ (numSteps) |
static int | MP_ (numSymbols) |
static int | MP_ (numTrials) |
static int | MP_ (populationSize) |
static int | MP_ (procsPerIterator) |
static int | MP_ (proposalCovUpdatePeriod) |
static int | MP_ (numPushforwardSamples) |
static int | MP_ (randomSeed) |
static int | MP_ (samplesOnEmulator) |
static int | MP_ (searchSchemeSize) |
static int | MP_ (subSamplingPeriod) |
static int | MP_ (totalPatternSize) |
static int | MP_ (verifyLevel) |
static size_t | MP_ (collocationPoints) |
static size_t | MP_ (expansionSamples) |
static size_t | MP_ (kickRank) |
static size_t | MP_ (maxCVRankCandidates) |
static size_t | MP_ (maxFunctionEvals) |
static size_t | MP_ (maxIterations) |
static size_t | MP_ (maxRank) |
static size_t | MP_ (maxRefineIterations) |
static size_t | MP_ (maxSolverIterations) |
static size_t | MP_ (numCandidateDesigns) |
static size_t | MP_ (numCandidates) |
static size_t | MP_ (numDesigns) |
static size_t | MP_ (numFinalSolutions) |
static size_t | MP_ (numGenerations) |
static size_t | MP_ (numOffspring) |
static size_t | MP_ (numParents) |
static size_t | MP_ (numPredConfigs) |
static size_t | MP_ (startRank) |
static Method_mp_type | MP2s (allocationTarget, TARGET_MEAN) |
static Method_mp_type | MP2s (allocationTarget, TARGET_SCALARIZATION) |
static Method_mp_type | MP2s (allocationTarget, TARGET_SIGMA) |
static Method_mp_type | MP2s (allocationTarget, TARGET_VARIANCE) |
static Method_mp_type | MP2s (c3AdvanceType, MAX_ORDER_ADVANCEMENT) |
static Method_mp_type | MP2s (c3AdvanceType, MAX_RANK_ADVANCEMENT) |
static Method_mp_type | MP2s (c3AdvanceType, MAX_RANK_ORDER_ADVANCEMENT) |
static Method_mp_type | MP2s (c3AdvanceType, START_ORDER_ADVANCEMENT) |
static Method_mp_type | MP2s (c3AdvanceType, START_RANK_ADVANCEMENT) |
static Method_mp_type | MP2s (convergenceToleranceTarget, CONVERGENCE_TOLERANCE_TARGET_COST_CONSTRAINT) |
static Method_mp_type | MP2s (convergenceToleranceTarget, CONVERGENCE_TOLERANCE_TARGET_VARIANCE_CONSTRAINT) |
static Method_mp_type | MP2s (convergenceToleranceType, CONVERGENCE_TOLERANCE_TYPE_ABSOLUTE) |
static Method_mp_type | MP2s (convergenceToleranceType, CONVERGENCE_TOLERANCE_TYPE_RELATIVE) |
static Method_mp_type | MP2s (covarianceControl, DIAGONAL_COVARIANCE) |
static Method_mp_type | MP2s (covarianceControl, FULL_COVARIANCE) |
static Method_mp_type | MP2s (dagRecursionType, FULL_GRAPH_RECURSION) |
static Method_mp_type | MP2s (dagRecursionType, KL_GRAPH_RECURSION) |
static Method_mp_type | MP2s (dagRecursionType, PARTIAL_GRAPH_RECURSION) |
static Method_mp_type | MP2s (distributionType, COMPLEMENTARY) |
static Method_mp_type | MP2s (distributionType, CUMULATIVE) |
static Method_mp_type | MP2s (emulatorType, EXPGP_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, GP_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, KRIGING_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, MF_PCE_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, MF_SC_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, ML_PCE_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, PCE_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, SC_EMULATOR) |
static Method_mp_type | MP2s (emulatorType, VPS_EMULATOR) |
static Method_mp_type | MP2s (ensembleSampSolnMode, OFFLINE_PILOT) |
static Method_mp_type | MP2s (ensembleSampSolnMode, ONLINE_PILOT) |
static Method_mp_type | MP2s (ensembleSampSolnMode, PILOT_PROJECTION) |
static Method_mp_type | MP2s (evalSynchronize, BLOCKING_SYNCHRONIZATION) |
static Method_mp_type | MP2s (evalSynchronize, NONBLOCKING_SYNCHRONIZATION) |
static Method_mp_type | MP2p (expansionBasisType, ADAPTED_BASIS_EXPANDING_FRONT) |
static Method_mp_type | MP2p (expansionBasisType, ADAPTED_BASIS_GENERALIZED) |
static Method_mp_type | MP2p (expansionBasisType, HIERARCHICAL_INTERPOLANT) |
static Method_mp_type | MP2p (expansionBasisType, NODAL_INTERPOLANT) |
static Method_mp_type | MP2p (expansionBasisType, TENSOR_PRODUCT_BASIS) |
static Method_mp_type | MP2p (expansionBasisType, TOTAL_ORDER_BASIS) |
static Method_mp_type | MP2s (expansionType, ASKEY_U) |
static Method_mp_type | MP2s (expansionType, STD_NORMAL_U) |
static Method_mp_type | MP2p (finalMomentsType, CENTRAL_MOMENTS) |
static Method_mp_type | MP2p (finalMomentsType, NO_MOMENTS) |
static Method_mp_type | MP2p (finalMomentsType, STANDARD_MOMENTS) |
static Method_mp_type | MP2s (finalStatsType, ESTIMATOR_PERFORMANCE) |
static Method_mp_type | MP2s (finalStatsType, NO_FINAL_STATS) |
static Method_mp_type | MP2s (finalStatsType, QOI_STATISTICS) |
static Method_mp_type | MP2p (growthOverride, RESTRICTED) |
static Method_mp_type | MP2p (growthOverride, UNRESTRICTED) |
static Method_mp_type | MP2s (iteratorScheduling, MASTER_SCHEDULING) |
static Method_mp_type | MP2s (iteratorScheduling, PEER_SCHEDULING) |
static Method_mp_type | MP2s (lsRegressionType, EQ_CON_LS) |
static Method_mp_type | MP2s (lsRegressionType, SVD_LS) |
static Method_mp_type | MP2o (meritFn, ArgaezTapia) |
static Method_mp_type | MP2o (meritFn, NormFmu) |
static Method_mp_type | MP2o (meritFn, VanShanno) |
static Method_mp_type | MP2s (methodOutput, DEBUG_OUTPUT) |
static Method_mp_type | MP2s (methodOutput, NORMAL_OUTPUT) |
static Method_mp_type | MP2s (methodOutput, QUIET_OUTPUT) |
static Method_mp_type | MP2s (methodOutput, SILENT_OUTPUT) |
static Method_mp_type | MP2s (methodOutput, VERBOSE_OUTPUT) |
static Method_mp_type | MP2s (multilevAllocControl, ESTIMATOR_VARIANCE) |
static Method_mp_type | MP2s (multilevAllocControl, GREEDY_REFINEMENT) |
static Method_mp_type | MP2s (multilevAllocControl, RANK_SAMPLING) |
static Method_mp_type | MP2s (multilevAllocControl, RIP_SAMPLING) |
static Method_mp_type | MP2s (multilevDiscrepEmulation, DISTINCT_EMULATION) |
static Method_mp_type | MP2s (multilevDiscrepEmulation, RECURSIVE_EMULATION) |
static Method_mp_type | MP2p (nestingOverride, NESTED) |
static Method_mp_type | MP2p (nestingOverride, NON_NESTED) |
static Method_mp_type | MP2s (qoiAggregation, QOI_AGGREGATION_MAX) |
static Method_mp_type | MP2s (qoiAggregation, QOI_AGGREGATION_SUM) |
static Method_mp_type | MP2p (refinementControl, DIMENSION_ADAPTIVE_CONTROL_GENERALIZED) |
static Method_mp_type | MP2p (refinementControl, DIMENSION_ADAPTIVE_CONTROL_DECAY) |
static Method_mp_type | MP2p (refinementControl, DIMENSION_ADAPTIVE_CONTROL_SOBOL) |
static Method_mp_type | MP2p (refinementControl, LOCAL_ADAPTIVE_CONTROL) |
static Method_mp_type | MP2p (refinementControl, UNIFORM_CONTROL) |
static Method_mp_type | MP2p (refinementType, P_REFINEMENT) |
static Method_mp_type | MP2p (refinementType, H_REFINEMENT) |
static Method_mp_type | MP2p (regressionType, BASIS_PURSUIT) |
static Method_mp_type | MP2p (regressionType, BASIS_PURSUIT_DENOISING) |
static Method_mp_type | MP2p (regressionType, DEFAULT_LEAST_SQ_REGRESSION) |
static Method_mp_type | MP2p (regressionType, LASSO_REGRESSION) |
static Method_mp_type | MP2p (regressionType, LEAST_ANGLE_REGRESSION) |
static Method_mp_type | MP2p (regressionType, ORTHOG_LEAST_INTERPOLATION) |
static Method_mp_type | MP2p (regressionType, ORTHOG_MATCH_PURSUIT) |
static Method_mp_type | MP2s (regressionType, FT_LS) |
static Method_mp_type | MP2s (regressionType, FT_RLS2) |
static Method_mp_type | MP2s (responseLevelTarget, GEN_RELIABILITIES) |
static Method_mp_type | MP2s (responseLevelTarget, PROBABILITIES) |
static Method_mp_type | MP2s (responseLevelTarget, RELIABILITIES) |
static Method_mp_type | MP2s (responseLevelTargetReduce, SYSTEM_PARALLEL) |
static Method_mp_type | MP2s (responseLevelTargetReduce, SYSTEM_SERIES) |
static Method_mp_type | MP2p (statsMetricMode, ACTIVE_EXPANSION_STATS) |
static Method_mp_type | MP2p (statsMetricMode, COMBINED_EXPANSION_STATS) |
static Method_mp_type | MP2s (surrBasedLocalAcceptLogic, FILTER) |
static Method_mp_type | MP2s (surrBasedLocalAcceptLogic, TR_RATIO) |
static Method_mp_type | MP2s (surrBasedLocalConstrRelax, HOMOTOPY) |
static Method_mp_type | MP2s (surrBasedLocalMeritFn, ADAPTIVE_PENALTY_MERIT) |
static Method_mp_type | MP2s (surrBasedLocalMeritFn, AUGMENTED_LAGRANGIAN_MERIT) |
static Method_mp_type | MP2s (surrBasedLocalMeritFn, LAGRANGIAN_MERIT) |
static Method_mp_type | MP2s (surrBasedLocalMeritFn, PENALTY_MERIT) |
static Method_mp_type | MP2s (surrBasedLocalSubProbCon, LINEARIZED_CONSTRAINTS) |
static Method_mp_type | MP2s (surrBasedLocalSubProbCon, NO_CONSTRAINTS) |
static Method_mp_type | MP2s (surrBasedLocalSubProbCon, ORIGINAL_CONSTRAINTS) |
static Method_mp_type | MP2s (surrBasedLocalSubProbObj, AUGMENTED_LAGRANGIAN_OBJECTIVE) |
static Method_mp_type | MP2s (surrBasedLocalSubProbObj, LAGRANGIAN_OBJECTIVE) |
static Method_mp_type | MP2s (surrBasedLocalSubProbObj, ORIGINAL_PRIMARY) |
static Method_mp_type | MP2s (surrBasedLocalSubProbObj, SINGLE_OBJECTIVE) |
static Method_mp_type | MP2s (wilksSidedInterval, ONE_SIDED_LOWER) |
static Method_mp_type | MP2s (wilksSidedInterval, ONE_SIDED_UPPER) |
static Method_mp_type | MP2s (wilksSidedInterval, TWO_SIDED) |
static Method_mp_utype | MP2s (calibrateErrorMode, CALIBRATE_ONE) |
static Method_mp_utype | MP2s (calibrateErrorMode, CALIBRATE_PER_EXPER) |
static Method_mp_utype | MP2s (calibrateErrorMode, CALIBRATE_PER_RESP) |
static Method_mp_utype | MP2s (calibrateErrorMode, CALIBRATE_BOTH) |
static Method_mp_utype | MP2s (exportApproxFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (exportApproxFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (exportApproxFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (exportApproxFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (exportApproxFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (exportCorrModelFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (exportCorrModelFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (exportCorrModelFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (exportCorrModelFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (exportCorrModelFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (exportCorrVarFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (exportCorrVarFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (exportCorrVarFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (exportCorrVarFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (exportCorrVarFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (exportDiscrepFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (exportDiscrepFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (exportDiscrepFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (exportDiscrepFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (exportDiscrepFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (exportSamplesFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (exportSamplesFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (exportSamplesFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (exportSamplesFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (exportSamplesFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (importApproxFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (importApproxFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (importApproxFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (importApproxFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (importApproxFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (importBuildFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (importBuildFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (importBuildFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (importBuildFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (importBuildFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (importCandFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (importCandFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (importCandFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (importCandFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (importCandFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (importPredConfigFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (importPredConfigFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (importPredConfigFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (importPredConfigFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (importPredConfigFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (integrationRefine, AIS) |
static Method_mp_utype | MP2s (integrationRefine, IS) |
static Method_mp_utype | MP2s (integrationRefine, MMAIS) |
static Method_mp_utype | MP2s (methodName, APPROXIMATE_CONTROL_VARIATE) |
static Method_mp_utype | MP2s (methodName, ASYNCH_PATTERN_SEARCH) |
static Method_mp_utype | MP2s (methodName, BRANCH_AND_BOUND) |
static Method_mp_utype | MP2s (methodName, C3_FUNCTION_TRAIN) |
static Method_mp_utype | MP2s (methodName, COLINY_BETA) |
static Method_mp_utype | MP2s (methodName, COLINY_COBYLA) |
static Method_mp_utype | MP2s (methodName, COLINY_DIRECT) |
static Method_mp_utype | MP2s (methodName, COLINY_EA) |
static Method_mp_utype | MP2s (methodName, COLINY_PATTERN_SEARCH) |
static Method_mp_utype | MP2s (methodName, COLINY_SOLIS_WETS) |
static Method_mp_utype | MP2s (methodName, CONMIN_FRCG) |
static Method_mp_utype | MP2s (methodName, CONMIN_MFD) |
static Method_mp_utype | MP2s (methodName, DACE) |
static Method_mp_utype | MP2s (methodName, DATA_FIT_SURROGATE_BASED_LOCAL) |
static Method_mp_utype | MP2s (methodName, DOT_BFGS) |
static Method_mp_utype | MP2s (methodName, DOT_FRCG) |
static Method_mp_utype | MP2s (methodName, DOT_MMFD) |
static Method_mp_utype | MP2s (methodName, DOT_SLP) |
static Method_mp_utype | MP2s (methodName, DOT_SQP) |
static Method_mp_utype | MP2s (methodName, EFFICIENT_GLOBAL) |
static Method_mp_utype | MP2s (methodName, FSU_CVT) |
static Method_mp_utype | MP2s (methodName, FSU_HALTON) |
static Method_mp_utype | MP2s (methodName, FSU_HAMMERSLEY) |
static Method_mp_utype | MP2s (methodName, HIERARCH_SURROGATE_BASED_LOCAL) |
static Method_mp_utype | MP2s (methodName, HYBRID) |
static Method_mp_utype | MP2s (methodName, MESH_ADAPTIVE_SEARCH) |
static Method_mp_utype | MP2s (methodName, MOGA) |
static Method_mp_utype | MP2s (methodName, MULTI_START) |
static Method_mp_utype | MP2s (methodName, NCSU_DIRECT) |
static Method_mp_utype | MP2s (methodName, ROL) |
static Method_mp_utype | MP2s (methodName, DEMO_TPL) |
static Method_mp_utype | MP2s (methodName, NL2SOL) |
static Method_mp_utype | MP2s (methodName, NLPQL_SQP) |
static Method_mp_utype | MP2s (methodName, NLSSOL_SQP) |
static Method_mp_utype | MP2s (methodName, MIT_NOWPAC) |
static Method_mp_utype | MP2s (methodName, MIT_SNOWPAC) |
static Method_mp_utype | MP2s (methodName, ADAPTIVE_SAMPLING) |
static Method_mp_utype | MP2s (methodName, BAYES_CALIBRATION) |
static Method_mp_utype | MP2s (methodName, GENIE_DIRECT) |
static Method_mp_utype | MP2s (methodName, GENIE_OPT_DARTS) |
static Method_mp_utype | MP2s (methodName, GPAIS) |
static Method_mp_utype | MP2s (methodName, GLOBAL_EVIDENCE) |
static Method_mp_utype | MP2s (methodName, GLOBAL_INTERVAL_EST) |
static Method_mp_utype | MP2s (methodName, GLOBAL_RELIABILITY) |
static Method_mp_utype | MP2s (methodName, IMPORTANCE_SAMPLING) |
static Method_mp_utype | MP2s (methodName, LOCAL_EVIDENCE) |
static Method_mp_utype | MP2s (methodName, LOCAL_INTERVAL_EST) |
static Method_mp_utype | MP2s (methodName, LOCAL_RELIABILITY) |
static Method_mp_utype | MP2s (methodName, MULTIFIDELITY_FUNCTION_TRAIN) |
static Method_mp_utype | MP2s (methodName, MULTIFIDELITY_POLYNOMIAL_CHAOS) |
static Method_mp_utype | MP2s (methodName, MULTIFIDELITY_SAMPLING) |
static Method_mp_utype | MP2s (methodName, MULTIFIDELITY_STOCH_COLLOCATION) |
static Method_mp_utype | MP2s (methodName, MULTILEVEL_FUNCTION_TRAIN) |
static Method_mp_utype | MP2s (methodName, MULTILEVEL_MULTIFIDELITY_SAMPLING) |
static Method_mp_utype | MP2s (methodName, MULTILEVEL_POLYNOMIAL_CHAOS) |
static Method_mp_utype | MP2s (methodName, MULTILEVEL_SAMPLING) |
static Method_mp_utype | MP2s (methodName, POF_DARTS) |
static Method_mp_utype | MP2s (methodName, RKD_DARTS) |
static Method_mp_utype | MP2s (methodName, POLYNOMIAL_CHAOS) |
static Method_mp_utype | MP2s (methodName, STOCH_COLLOCATION) |
static Method_mp_utype | MP2s (methodName, SURROGATE_BASED_UQ) |
static Method_mp_utype | MP2s (methodName, RANDOM_SAMPLING) |
static Method_mp_utype | MP2s (methodName, NONLINEAR_CG) |
static Method_mp_utype | MP2s (methodName, NPSOL_SQP) |
static Method_mp_utype | MP2s (methodName, OPTPP_CG) |
static Method_mp_utype | MP2s (methodName, OPTPP_FD_NEWTON) |
static Method_mp_utype | MP2s (methodName, OPTPP_G_NEWTON) |
static Method_mp_utype | MP2s (methodName, OPTPP_NEWTON) |
static Method_mp_utype | MP2s (methodName, OPTPP_PDS) |
static Method_mp_utype | MP2s (methodName, OPTPP_Q_NEWTON) |
static Method_mp_utype | MP2s (methodName, PARETO_SET) |
static Method_mp_utype | MP2s (methodName, PSUADE_MOAT) |
static Method_mp_utype | MP2s (methodName, RICHARDSON_EXTRAP) |
static Method_mp_utype | MP2s (methodName, SOGA) |
static Method_mp_utype | MP2s (methodName, SURROGATE_BASED_GLOBAL) |
static Method_mp_utype | MP2s (methodName, SURROGATE_BASED_LOCAL) |
static Method_mp_utype | MP2s (methodName, VECTOR_PARAMETER_STUDY) |
static Method_mp_utype | MP2s (methodName, LIST_PARAMETER_STUDY) |
static Method_mp_utype | MP2s (methodName, CENTERED_PARAMETER_STUDY) |
static Method_mp_utype | MP2s (methodName, MULTIDIM_PARAMETER_STUDY) |
static Method_mp_utype | MP2s (modelExportFormat, TEXT_ARCHIVE) |
static Method_mp_utype | MP2s (modelExportFormat, BINARY_ARCHIVE) |
static Method_mp_utype | MP2s (numericalSolveMode, NUMERICAL_FALLBACK) |
static Method_mp_utype | MP2s (numericalSolveMode, NUMERICAL_OVERRIDE) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_NONE) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_OPTPP) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_NPSOL) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_SBLO) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_EA) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_EGO) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_SBGO) |
static Method_mp_utype | MP2s (optSubProbSolver, SUBMETHOD_LHS) |
static Method_mp_utype | MP2s (pstudyFileFormat, TABULAR_NONE) |
static Method_mp_utype | MP2s (pstudyFileFormat, TABULAR_HEADER) |
static Method_mp_utype | MP2s (pstudyFileFormat, TABULAR_EVAL_ID) |
static Method_mp_utype | MP2s (pstudyFileFormat, TABULAR_IFACE_ID) |
static Method_mp_utype | MP2s (pstudyFileFormat, TABULAR_ANNOTATED) |
static Method_mp_utype | MP2s (sampleType, SUBMETHOD_LHS) |
static Method_mp_utype | MP2s (sampleType, SUBMETHOD_RANDOM) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_AMV_PLUS_U) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_AMV_PLUS_X) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_AMV_U) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_AMV_X) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_QMEA_U) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_QMEA_X) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_TANA_U) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_TANA_X) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_NO_APPROX) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_EGRA_U) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_EGRA_X) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_ACV_IS) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_ACV_MF) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_ACV_RD) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_COLLABORATIVE) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_EMBEDDED) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_SEQUENTIAL) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_MUQ) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_DREAM) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_WASABI) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_GPMSA) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_QUESO) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_LHS) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_RANDOM) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_OA_LHS) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_OAS) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_BOX_BEHNKEN) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_CENTRAL_COMPOSITE) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_GRID) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_CONVERGE_ORDER) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_CONVERGE_QOI) |
static Method_mp_utype | MP2s (subMethod, SUBMETHOD_ESTIMATE_ORDER) |
static SizetSet | MP_ (surrogateFnIndices) |
static Model_mp_lit | MP2 (approxPointReuse, all) |
static Model_mp_lit | MP2 (approxPointReuse, none) |
static Model_mp_lit | MP2 (approxPointReuse, region) |
static Model_mp_lit | MP2 (marsInterpolation, linear) |
static Model_mp_lit | MP2 (marsInterpolation, cubic) |
static Model_mp_lit | MP2 (modelType, active_subspace) |
static Model_mp_lit | MP2 (modelType, adapted_basis) |
static Model_mp_lit | MP2 (modelType, nested) |
static Model_mp_lit | MP2 (modelType, random_field) |
static Model_mp_lit | MP2 (modelType, simulation) |
static Model_mp_lit | MP2 (modelType, surrogate) |
static Model_mp_lit | MP2 (surrogateType, ensemble) |
static Model_mp_lit | MP2 (surrogateType, global_exp_gauss_proc) |
static Model_mp_lit | MP2 (surrogateType, global_exp_poly) |
static Model_mp_lit | MP2 (surrogateType, global_function_train) |
static Model_mp_lit | MP2 (surrogateType, global_gaussian) |
static Model_mp_lit | MP2 (surrogateType, global_kriging) |
static Model_mp_lit | MP2 (surrogateType, global_mars) |
static Model_mp_lit | MP2 (surrogateType, global_moving_least_squares) |
static Model_mp_lit | MP2 (surrogateType, global_neural_network) |
static Model_mp_lit | MP2 (surrogateType, global_polynomial) |
static Model_mp_lit | MP2 (surrogateType, global_radial_basis) |
static Model_mp_lit | MP2 (surrogateType, global_voronoi_surrogate) |
static Model_mp_lit | MP2 (surrogateType, local_taylor) |
static Model_mp_lit | MP2 (surrogateType, multipoint_qmea) |
static Model_mp_lit | MP2 (surrogateType, multipoint_tana) |
static Model_mp_lit | MP2 (trendOrder, none) |
static Model_mp_lit | MP2 (trendOrder, constant) |
static Model_mp_lit | MP2 (trendOrder, linear) |
static Model_mp_lit | MP2 (trendOrder, reduced_quadratic) |
static Model_mp_lit | MP2 (trendOrder, quadratic) |
static Model_mp_ord | MP2s (approxCorrectionOrder, 0) |
static Model_mp_ord | MP2s (approxCorrectionOrder, 1) |
static Model_mp_ord | MP2s (approxCorrectionOrder, 2) |
static Model_mp_ord | MP2s (polynomialOrder, 1) |
static Model_mp_ord | MP2s (polynomialOrder, 2) |
static Model_mp_ord | MP2s (polynomialOrder, 3) |
static Model_mp_type | MP2s (approxCorrectionType, ADDITIVE_CORRECTION) |
static Model_mp_type | MP2s (approxCorrectionType, COMBINED_CORRECTION) |
static Model_mp_type | MP2s (approxCorrectionType, MULTIPLICATIVE_CORRECTION) |
static Model_mp_type | MP2s (pointsManagement, MINIMUM_POINTS) |
static Model_mp_type | MP2s (pointsManagement, RECOMMENDED_POINTS) |
static Model_mp_type | MP2s (subMethodScheduling, MASTER_SCHEDULING) |
static Model_mp_type | MP2s (method_rotation, ROTATION_METHOD_UNRANKED) |
static Model_mp_type | MP2s (method_rotation, ROTATION_METHOD_RANKED) |
static Model_mp_type | MP2s (subMethodScheduling, PEER_SCHEDULING) |
static Model_mp_utype | MP2s (analyticCovIdForm, EXP_L2) |
static Model_mp_utype | MP2s (analyticCovIdForm, EXP_L1) |
static Model_mp_utype | MP2s (exportApproxVarianceFormat, TABULAR_NONE) |
static Model_mp_utype | MP2s (exportApproxVarianceFormat, TABULAR_HEADER) |
static Model_mp_utype | MP2s (exportApproxVarianceFormat, TABULAR_EVAL_ID) |
static Model_mp_utype | MP2s (exportApproxVarianceFormat, TABULAR_IFACE_ID) |
static Model_mp_utype | MP2s (exportApproxVarianceFormat, TABULAR_ANNOTATED) |
static Model_mp_utype | MP2s (importChallengeFormat, TABULAR_NONE) |
static Model_mp_utype | MP2s (importChallengeFormat, TABULAR_HEADER) |
static Model_mp_utype | MP2s (importChallengeFormat, TABULAR_EVAL_ID) |
static Model_mp_utype | MP2s (importChallengeFormat, TABULAR_IFACE_ID) |
static Model_mp_utype | MP2s (importChallengeFormat, TABULAR_ANNOTATED) |
static Model_mp_utype | MP2s (modelExportFormat, ALGEBRAIC_FILE) |
static Model_mp_utype | MP2s (modelExportFormat, ALGEBRAIC_CONSOLE) |
static Model_mp_utype | MP2s (modelImportFormat, TEXT_ARCHIVE) |
static Model_mp_utype | MP2s (modelImportFormat, BINARY_ARCHIVE) |
static Model_mp_utype | MP2s (randomFieldIdForm, RF_KARHUNEN_LOEVE) |
static Model_mp_utype | MP2s (randomFieldIdForm, RF_PCA_GP) |
static Model_mp_utype | MP2s (subspaceNormalization, SUBSPACE_NORM_MEAN_VALUE) |
static Model_mp_utype | MP2s (subspaceNormalization, SUBSPACE_NORM_MEAN_GRAD) |
static Model_mp_utype | MP2s (subspaceNormalization, SUBSPACE_NORM_LOCAL_GRAD) |
static Model_mp_utype | MP2s (subspaceSampleType, SUBMETHOD_LHS) |
static Model_mp_utype | MP2s (subspaceSampleType, SUBMETHOD_RANDOM) |
static Model_mp_utype | MP2s (subspaceIdCVMethod, MINIMUM_METRIC) |
static Model_mp_utype | MP2s (subspaceIdCVMethod, RELATIVE_TOLERANCE) |
static Model_mp_utype | MP2s (subspaceIdCVMethod, DECREASE_TOLERANCE) |
static Real | MP_ (adaptedBasisCollocRatio) |
static Real | MP_ (annRange) |
static Real | MP_ (decreaseTolerance) |
static Real | MP_ (discontGradThresh) |
static Real | MP_ (discontJumpThresh) |
static Real | MP_ (krigingNugget) |
static Real | MP_ (percentFold) |
static Real | MP_ (relTolerance) |
static Real | MP_ (truncationTolerance) |
static Real | MP_ (adaptedBasisTruncationTolerance) |
static RealVector | MP_ (krigingCorrelations) |
static RealVector | MP_ (primaryRespCoeffs) |
static RealVector | MP_ (secondaryRespCoeffs) |
static RealVector | MP_ (solutionLevelCost) |
static String | MP_ (costRecoveryMetadata) |
static String | MP_ (decompCellType) |
static String | MP_ (exportApproxVarianceFile) |
static String | MP_ (idModel) |
static String | MP_ (importChallengePtsFile) |
static String | MP_ (interfacePointer) |
static String | MP_ (krigingOptMethod) |
static String | MP_ (modelImportPrefix) |
static String | MP_ (optionalInterfRespPointer) |
static String | MP_ (propagationModelPointer) |
static String | MP_ (refineCVMetric) |
static String | MP_ (responsesPointer) |
static String | MP_ (rfDataFileName) |
static String | MP_ (solutionLevelControl) |
static String | MP_ (truthModelPointer) |
static String | MP_ (variablesPointer) |
static StringArray | MP_ (diagMetrics) |
static StringArray | MP_ (ensembleModelPointers) |
static StringArray | MP_ (primaryVarMaps) |
static StringArray | MP_ (secondaryVarMaps) |
static bool | MP_ (autoRefine) |
static bool | MP_ (crossValidateFlag) |
static bool | MP_ (decompDiscontDetect) |
static bool | MP_ (importSurrogate) |
static bool | MP_ (hierarchicalTags) |
static bool | MP_ (identityRespMap) |
static bool | MP_ (importChallengeActive) |
static bool | MP_ (importChalUseVariableLabels) |
static bool | MP_ (importUseVariableLabels) |
static bool | MP_ (modelUseDerivsFlag) |
static bool | MP_ (domainDecomp) |
static bool | MP_ (pointSelection) |
static bool | MP_ (pressFlag) |
static bool | MP_ (subspaceIdBingLi) |
static bool | MP_ (subspaceIdConstantine) |
static bool | MP_ (subspaceIdEnergy) |
static bool | MP_ (subspaceBuildSurrogate) |
static bool | MP_ (subspaceIdCV) |
static bool | MP_ (subspaceCVIncremental) |
static unsigned short | MP_ (adaptedBasisSparseGridLev) |
static unsigned short | MP_ (adaptedBasisExpOrder) |
static short | MP_ (annNodes) |
static short | MP_ (annRandomWeight) |
static short | MP_ (c3AdvanceType) |
static short | MP_ (krigingFindNugget) |
static short | MP_ (krigingMaxTrials) |
static short | MP_ (marsMaxBases) |
static short | MP_ (mlsWeightFunction) |
static short | MP_ (rbfBases) |
static short | MP_ (rbfMaxPts) |
static short | MP_ (rbfMaxSubsets) |
static short | MP_ (rbfMinPartition) |
static int | MP_ (decompSupportLayers) |
static int | MP_ (initialSamples) |
static int | MP_ (numFolds) |
static int | MP_ (numReplicates) |
static int | MP_ (numRestarts) |
static int | MP_ (pointsTotal) |
static int | MP_ (refineCVFolds) |
static int | MP_ (softConvergenceLimit) |
static int | MP_ (subMethodProcs) |
static int | MP_ (subMethodServers) |
static int | MP_ (subspaceDimension) |
static int | MP_ (subspaceCVMaxRank) |
static IntSet | MP_ (idAnalyticGrads) |
static IntSet | MP_ (idAnalyticHessians) |
static IntSet | MP_ (idNumericalGrads) |
static IntSet | MP_ (idNumericalHessians) |
static IntSet | MP_ (idQuasiHessians) |
static IntVector | MP_ (fieldLengths) |
static IntVector | MP_ (numCoordsPerField) |
static RealVector | MP_ (expConfigVars) |
static RealVector | MP_ (expObservations) |
static RealVector | MP_ (primaryRespFnWeights) |
static RealVector | MP_ (nonlinearEqTargets) |
static RealVector | MP_ (nonlinearIneqLowerBnds) |
static RealVector | MP_ (nonlinearIneqUpperBnds) |
static RealVector | MP_ (simVariance) |
static RealVector | MP_ (fdGradStepSize) |
static RealVector | MP_ (fdHessStepSize) |
static RealVector | MP_ (primaryRespFnScales) |
static RealVector | MP_ (nonlinearEqScales) |
static RealVector | MP_ (nonlinearIneqScales) |
static Resp_mp_lit | MP2 (gradientType, analytic) |
static Resp_mp_lit | MP2 (gradientType, mixed) |
static Resp_mp_lit | MP2 (gradientType, none) |
static Resp_mp_lit | MP2 (gradientType, numerical) |
static Resp_mp_lit | MP2 (hessianType, analytic) |
static Resp_mp_lit | MP2 (hessianType, mixed) |
static Resp_mp_lit | MP2 (hessianType, none) |
static Resp_mp_lit | MP2 (hessianType, numerical) |
static Resp_mp_lit | MP2 (hessianType, quasi) |
static Resp_mp_lit | MP2 (intervalType, central) |
static Resp_mp_lit | MP2 (intervalType, forward) |
static Resp_mp_lit | MP2 (methodSource, dakota) |
static Resp_mp_lit | MP2 (methodSource, vendor) |
static Resp_mp_lit | MP2 (fdGradStepType, absolute) |
static Resp_mp_lit | MP2 (fdGradStepType, bounds) |
static Resp_mp_lit | MP2 (fdGradStepType, relative) |
static Resp_mp_lit | MP2 (fdHessStepType, absolute) |
static Resp_mp_lit | MP2 (fdHessStepType, bounds) |
static Resp_mp_lit | MP2 (fdHessStepType, relative) |
static Resp_mp_lit | MP2 (quasiHessianType, bfgs) |
static Resp_mp_lit | MP2 (quasiHessianType, damped_bfgs) |
static Resp_mp_lit | MP2 (quasiHessianType, sr1) |
static String | MP_ (dataPathPrefix) |
static String | MP_ (scalarDataFileName) |
static String | MP_ (idResponses) |
static StringArray | MP_ (metadataLabels) |
static StringArray | MP_ (nonlinearEqScaleTypes) |
static StringArray | MP_ (nonlinearIneqScaleTypes) |
static StringArray | MP_ (primaryRespFnScaleTypes) |
static StringArray | MP_ (primaryRespFnSense) |
static StringArray | MP_ (responseLabels) |
static StringArray | MP_ (varianceType) |
static bool | MP_ (calibrationDataFlag) |
static bool | MP_ (centralHess) |
static bool | MP_ (interpolateFlag) |
static bool | MP_ (ignoreBounds) |
static bool | MP_ (readFieldCoords) |
static size_t | MP_ (numExpConfigVars) |
static size_t | MP_ (numExperiments) |
static size_t | MP_ (numFieldLeastSqTerms) |
static size_t | MP_ (numFieldObjectiveFunctions) |
static size_t | MP_ (numFieldResponseFunctions) |
static size_t | MP_ (numLeastSqTerms) |
static size_t | MP_ (numNonlinearEqConstraints) |
static size_t | MP_ (numNonlinearIneqConstraints) |
static size_t | MP_ (numObjectiveFunctions) |
static size_t | MP_ (numResponseFunctions) |
static size_t | MP_ (numScalarLeastSqTerms) |
static size_t | MP_ (numScalarObjectiveFunctions) |
static size_t | MP_ (numScalarResponseFunctions) |
static Resp_mp_utype | MP2s (scalarDataFormat, TABULAR_NONE) |
static Resp_mp_utype | MP2s (scalarDataFormat, TABULAR_HEADER) |
static Resp_mp_utype | MP2s (scalarDataFormat, TABULAR_EVAL_ID) |
static Resp_mp_utype | MP2s (scalarDataFormat, TABULAR_EXPER_ANNOT) |
static Env_mp_utype | MP2s (postRunInputFormat, TABULAR_NONE) |
static Env_mp_utype | MP2s (postRunInputFormat, TABULAR_HEADER) |
static Env_mp_utype | MP2s (postRunInputFormat, TABULAR_EVAL_ID) |
static Env_mp_utype | MP2s (postRunInputFormat, TABULAR_IFACE_ID) |
static Env_mp_utype | MP2s (postRunInputFormat, TABULAR_ANNOTATED) |
static Env_mp_utype | MP2s (preRunOutputFormat, TABULAR_NONE) |
static Env_mp_utype | MP2s (preRunOutputFormat, TABULAR_HEADER) |
static Env_mp_utype | MP2s (preRunOutputFormat, TABULAR_EVAL_ID) |
static Env_mp_utype | MP2s (preRunOutputFormat, TABULAR_IFACE_ID) |
static Env_mp_utype | MP2s (preRunOutputFormat, TABULAR_ANNOTATED) |
static Env_mp_utype | MP2s (tabularFormat, TABULAR_NONE) |
static Env_mp_utype | MP2s (tabularFormat, TABULAR_HEADER) |
static Env_mp_utype | MP2s (tabularFormat, TABULAR_EVAL_ID) |
static Env_mp_utype | MP2s (tabularFormat, TABULAR_IFACE_ID) |
static Env_mp_utype | MP2s (tabularFormat, TABULAR_ANNOTATED) |
static Env_mp_utype | MP2s (resultsOutputFormat, RESULTS_OUTPUT_TEXT) |
static Env_mp_utype | MP2s (resultsOutputFormat, RESULTS_OUTPUT_HDF5) |
static Env_mp_utype | MP2s (modelEvalsSelection, MODEL_EVAL_STORE_TOP_METHOD) |
static Env_mp_utype | MP2s (modelEvalsSelection, MODEL_EVAL_STORE_NONE) |
static Env_mp_utype | MP2s (modelEvalsSelection, MODEL_EVAL_STORE_ALL) |
static Env_mp_utype | MP2s (modelEvalsSelection, MODEL_EVAL_STORE_ALL_METHODS) |
static Env_mp_utype | MP2s (interfEvalsSelection, INTERF_EVAL_STORE_SIMULATION) |
static Env_mp_utype | MP2s (interfEvalsSelection, INTERF_EVAL_STORE_NONE) |
static Env_mp_utype | MP2s (interfEvalsSelection, INTERF_EVAL_STORE_ALL) |
static String | MP_ (errorFile) |
static String | MP_ (outputFile) |
static String | MP_ (postRunInput) |
static String | MP_ (postRunOutput) |
static String | MP_ (preRunInput) |
static String | MP_ (preRunOutput) |
static String | MP_ (readRestart) |
static String | MP_ (resultsOutputFile) |
static String | MP_ (runInput) |
static String | MP_ (runOutput) |
static String | MP_ (tabularDataFile) |
static String | MP_ (topMethodPointer) |
static String | MP_ (writeRestart) |
static bool | MP_ (checkFlag) |
static bool | MP_ (graphicsFlag) |
static bool | MP_ (postRunFlag) |
static bool | MP_ (preRunFlag) |
static bool | MP_ (resultsOutputFlag) |
static bool | MP_ (runFlag) |
static bool | MP_ (tabularDataFlag) |
static int | MP_ (outputPrecision) |
static int | MP_ (stopRestart) |
static size_t | MP_ (numBetaUncVars) |
static size_t | MP_ (numBinomialUncVars) |
static size_t | MP_ (numContinuousDesVars) |
static size_t | MP_ (numContinuousIntervalUncVars) |
static size_t | MP_ (numContinuousStateVars) |
static size_t | MP_ (numDiscreteDesRangeVars) |
static size_t | MP_ (numDiscreteDesSetIntVars) |
static size_t | MP_ (numDiscreteDesSetStrVars) |
static size_t | MP_ (numDiscreteDesSetRealVars) |
static size_t | MP_ (numDiscreteIntervalUncVars) |
static size_t | MP_ (numDiscreteStateRangeVars) |
static size_t | MP_ (numDiscreteStateSetIntVars) |
static size_t | MP_ (numDiscreteStateSetStrVars) |
static size_t | MP_ (numDiscreteStateSetRealVars) |
static size_t | MP_ (numDiscreteUncSetIntVars) |
static size_t | MP_ (numDiscreteUncSetStrVars) |
static size_t | MP_ (numDiscreteUncSetRealVars) |
static size_t | MP_ (numExponentialUncVars) |
static size_t | MP_ (numFrechetUncVars) |
static size_t | MP_ (numGammaUncVars) |
static size_t | MP_ (numGeometricUncVars) |
static size_t | MP_ (numGumbelUncVars) |
static size_t | MP_ (numHistogramBinUncVars) |
static size_t | MP_ (numHistogramPtIntUncVars) |
static size_t | MP_ (numHistogramPtStrUncVars) |
static size_t | MP_ (numHistogramPtRealUncVars) |
static size_t | MP_ (numHyperGeomUncVars) |
static size_t | MP_ (numLognormalUncVars) |
static size_t | MP_ (numLoguniformUncVars) |
static size_t | MP_ (numNegBinomialUncVars) |
static size_t | MP_ (numNormalUncVars) |
static size_t | MP_ (numPoissonUncVars) |
static size_t | MP_ (numTriangularUncVars) |
static size_t | MP_ (numUniformUncVars) |
static size_t | MP_ (numWeibullUncVars) |
static IntVector | VP_ (ddsi) |
static IntVector | VP_ (DIlb) |
static IntVector | MP_ (discreteDesignRangeLowerBnds) |
static IntVector | MP_ (discreteDesignRangeUpperBnds) |
static IntVector | MP_ (discreteDesignRangeVars) |
static IntVector | MP_ (discreteDesignSetIntVars) |
static IntVector | MP_ (discreteIntervalUncVars) |
static IntVector | MP_ (discreteStateRangeLowerBnds) |
static IntVector | MP_ (discreteStateRangeUpperBnds) |
static IntVector | MP_ (discreteStateRangeVars) |
static IntVector | MP_ (discreteStateSetIntVars) |
static IntVector | MP_ (discreteUncSetIntVars) |
static IntVector | VP_ (DIub) |
static IntVector | MP_ (histogramPointIntUncVars) |
static IntVector | VP_ (hpia) |
static IntVector | VP_ (dssi) |
static IntVector | VP_ (ddsia) |
static IntVector | VP_ (ddssa) |
static IntVector | VP_ (ddsra) |
static IntVector | VP_ (dusi) |
static IntArray | VP_ (nddsi) |
static IntArray | VP_ (nddss) |
static IntArray | VP_ (nddsr) |
static IntArray | VP_ (ndssi) |
static IntArray | VP_ (ndsss) |
static IntArray | VP_ (ndssr) |
static IntArray | VP_ (ndusi) |
static IntArray | VP_ (nduss) |
static IntArray | VP_ (ndusr) |
static IntArray | VP_ (nhbp) |
static IntArray | VP_ (nhpip) |
static IntArray | VP_ (nhpsp) |
static IntArray | VP_ (nhprp) |
static IntArray | VP_ (nCI) |
static IntArray | VP_ (nDI) |
static RealVector | MP_ (betaUncLowerBnds) |
static RealVector | MP_ (betaUncUpperBnds) |
static RealVector | MP_ (betaUncVars) |
static RealVector | MP_ (binomialUncProbPerTrial) |
static RealVector | MP_ (continuousDesignLowerBnds) |
static RealVector | MP_ (continuousDesignUpperBnds) |
static RealVector | MP_ (continuousDesignVars) |
static RealVector | MP_ (continuousDesignScales) |
static RealVector | MP_ (continuousIntervalUncVars) |
static RealVector | MP_ (continuousStateLowerBnds) |
static RealVector | MP_ (continuousStateUpperBnds) |
static RealVector | MP_ (continuousStateVars) |
static RealVector | MP_ (discreteDesignSetRealVars) |
static RealVector | MP_ (discreteStateSetRealVars) |
static RealVector | MP_ (discreteUncSetRealVars) |
static RealVector | MP_ (frechetUncBetas) |
static RealVector | MP_ (frechetUncVars) |
static RealVector | MP_ (geometricUncProbPerTrial) |
static RealVector | MP_ (gumbelUncBetas) |
static RealVector | MP_ (gumbelUncVars) |
static RealVector | MP_ (histogramBinUncVars) |
static RealVector | MP_ (histogramPointRealUncVars) |
static RealVector | MP_ (linearEqConstraintCoeffs) |
static RealVector | MP_ (linearEqScales) |
static RealVector | MP_ (linearEqTargets) |
static RealVector | MP_ (linearIneqConstraintCoeffs) |
static RealVector | MP_ (linearIneqLowerBnds) |
static RealVector | MP_ (linearIneqUpperBnds) |
static RealVector | MP_ (linearIneqScales) |
static RealVector | MP_ (negBinomialUncProbPerTrial) |
static RealVector | MP_ (normalUncLowerBnds) |
static RealVector | MP_ (normalUncMeans) |
static RealVector | MP_ (normalUncUpperBnds) |
static RealVector | MP_ (normalUncVars) |
static RealVector | MP_ (triangularUncModes) |
static RealVector | MP_ (triangularUncVars) |
static RealVector | MP_ (uniformUncVars) |
static RealVector | MP_ (weibullUncVars) |
static RealVector | VP_ (ddsr) |
static RealVector | VP_ (dssr) |
static RealVector | VP_ (dusr) |
static RealVector | VP_ (CIlb) |
static RealVector | VP_ (CIub) |
static RealVector | VP_ (CIp) |
static RealVector | VP_ (DIp) |
static RealVector | VP_ (DSIp) |
static RealVector | VP_ (DSSp) |
static RealVector | VP_ (DSRp) |
static RealVector | VP_ (hba) |
static RealVector | VP_ (hbo) |
static RealVector | VP_ (hbc) |
static RealVector | VP_ (hpic) |
static RealVector | VP_ (hpsc) |
static RealVector | VP_ (hpra) |
static RealVector | VP_ (hprc) |
static RealVector | VP_ (ucm) |
static String | MP_ (idVariables) |
static StringArray | MP_ (continuousDesignLabels) |
static StringArray | MP_ (continuousDesignScaleTypes) |
static StringArray | MP_ (continuousStateLabels) |
static StringArray | MP_ (discreteDesignRangeLabels) |
static StringArray | MP_ (discreteDesignSetIntLabels) |
static StringArray | MP_ (discreteDesignSetStrLabels) |
static StringArray | MP_ (discreteDesignSetRealLabels) |
static StringArray | MP_ (discreteStateRangeLabels) |
static StringArray | MP_ (discreteStateSetIntLabels) |
static StringArray | MP_ (discreteStateSetStrLabels) |
static StringArray | MP_ (discreteStateSetRealLabels) |
static StringArray | MP_ (discreteDesignSetStrVars) |
static StringArray | MP_ (discreteUncSetStrVars) |
static StringArray | MP_ (discreteStateSetStrVars) |
static StringArray | MP_ (histogramPointStrUncVars) |
static StringArray | MP_ (linearEqScaleTypes) |
static StringArray | MP_ (linearIneqScaleTypes) |
static StringArray | VP_ (hpsa) |
static StringArray | VP_ (ddss) |
static StringArray | VP_ (duss) |
static StringArray | VP_ (dsss) |
static BitArray | MP_ (discreteDesignSetIntCat) |
static BitArray | MP_ (discreteDesignSetRealCat) |
static BitArray | MP_ (discreteStateSetIntCat) |
static BitArray | MP_ (discreteStateSetRealCat) |
static BitArray | MP_ (discreteUncSetIntCat) |
static BitArray | MP_ (discreteUncSetRealCat) |
static Var_brv | MP2s (betaUncAlphas, 0.) |
static Var_brv | MP2s (betaUncBetas, 0.) |
static Var_brv | MP2s (exponentialUncBetas, 0.) |
static Var_brv | MP2s (exponentialUncVars, 0.) |
static Var_brv | MP2s (frechetUncAlphas, 2.) |
static Var_brv | MP2s (gammaUncAlphas, 0.) |
static Var_brv | MP2s (gammaUncBetas, 0.) |
static Var_brv | MP2s (gammaUncVars, 0.) |
static Var_brv | MP2s (gumbelUncAlphas, 0.) |
static Var_brv | MP2s (lognormalUncErrFacts, 1.) |
static Var_brv | MP2s (lognormalUncLambdas, 0.) |
static Var_brv | MP2s (lognormalUncLowerBnds, 0.) |
static Var_brv | MP2s (lognormalUncMeans, 0.) |
static Var_brv | MP2s (lognormalUncStdDevs, 0.) |
static Var_brv | MP2s (lognormalUncUpperBnds, std::numeric_limits< Real >::infinity()) |
static Var_brv | MP2s (lognormalUncVars, 0.) |
static Var_brv | MP2s (lognormalUncZetas, 0.) |
static Var_brv | MP2s (loguniformUncLowerBnds, 0.) |
static Var_brv | MP2s (loguniformUncUpperBnds, std::numeric_limits< Real >::infinity()) |
static Var_brv | MP2s (loguniformUncVars, 0.) |
static Var_brv | MP2s (normalUncStdDevs, 0.) |
static Var_brv | MP2s (poissonUncLambdas, 0.) |
static Var_brv | MP2s (triangularUncLowerBnds,-std::numeric_limits< Real >::infinity()) |
static Var_brv | MP2s (triangularUncUpperBnds, std::numeric_limits< Real >::infinity()) |
static Var_brv | MP2s (uniformUncLowerBnds,-std::numeric_limits< Real >::infinity()) |
static Var_brv | MP2s (uniformUncUpperBnds, std::numeric_limits< Real >::infinity()) |
static Var_brv | MP2s (weibullUncAlphas, 0.) |
static Var_brv | MP2s (weibullUncBetas, 0.) |
static Var_biv | MP2s (binomialUncNumTrials, 0) |
static Var_biv | MP2s (binomialUncVars, 0) |
static Var_biv | MP2s (geometricUncVars, 0) |
static Var_biv | MP2s (hyperGeomUncNumDrawn, 0) |
static Var_biv | MP2s (hyperGeomUncSelectedPop, 0) |
static Var_biv | MP2s (hyperGeomUncTotalPop, 0) |
static Var_biv | MP2s (hyperGeomUncVars, 0) |
static Var_biv | MP2s (negBinomialUncNumTrials, 0) |
static Var_biv | MP2s (negBinomialUncVars, 0) |
static Var_biv | MP2s (poissonUncVars, 0) |
static Var_mp_type | Vtype (varsDomain, MIXED_DOMAIN) |
static Var_mp_type | Vtype (varsDomain, RELAXED_DOMAIN) |
static Var_mp_type | Vtype (varsView, ALL_VIEW) |
static Var_mp_type | Vtype (varsView, DESIGN_VIEW) |
static Var_mp_type | Vtype (varsView, UNCERTAIN_VIEW) |
static Var_mp_type | Vtype (varsView, ALEATORY_UNCERTAIN_VIEW) |
static Var_mp_type | Vtype (varsView, EPISTEMIC_UNCERTAIN_VIEW) |
static Var_mp_type | Vtype (varsView, STATE_VIEW) |
template<class ContainerT > | |
void | flatten_num_array (const std::vector< ContainerT > &input_array, IntArray **pia) |
Free convenience function that flatten sizes of an array of std containers; takes an array of containers and returns an IntArray containing the sizes of each container in the input array. Note: Did not specialize for vector<RealVector> as no current use cases. | |
void | dn2f_ (int *n, int *p, Real *x, Calcrj, int *iv, int *liv, int *lv, Real *v, int *ui, void *ur, Vf) |
void | dn2fb_ (int *n, int *p, Real *x, Real *b, Calcrj, int *iv, int *liv, int *lv, Real *v, int *ui, void *ur, Vf) |
void | dn2g_ (int *n, int *p, Real *x, Calcrj, Calcrj, int *iv, int *liv, int *lv, Real *v, int *ui, void *ur, Vf) |
void | dn2gb_ (int *n, int *p, Real *x, Real *b, Calcrj, Calcrj, int *iv, int *liv, int *lv, Real *v, int *ui, void *ur, Vf) |
void | divset_ (int *, int *, int *, int *, Real *) |
double | dr7mdc_ (int *) |
static void | Rswapchk (Nl2Misc *q) |
static int | hasnaninf (const double *d, int n) |
NLPQLPOptimizer * | new_NLPQLPOptimizer (ProblemDescDB &problem_db, Model &model) |
NLPQLPOptimizer * | new_NLPQLPOptimizer (Model &model) |
void | print_c3_sobol_indices (double value, size_t ninteract, size_t *interactions, void *arg) |
static const RealVector * | static_lev_cost_vec (NULL) |
static size_t * | static_qoi (NULL) |
static const Real * | static_eps_sq_div_2 (NULL) |
static const RealVector * | static_Nlq_pilot (NULL) |
static const size_t * | static_numFunctions (NULL) |
static const size_t * | static_qoiAggregation (NULL) |
static int * | static_randomSeed (NULL) |
static const IntRealMatrixMap * | static_sum_Ql (NULL) |
static const IntRealMatrixMap * | static_sum_Qlm1 (NULL) |
static const IntIntPairRealMatrixMap * | static_sum_QlQlm1 (NULL) |
static const RealMatrix * | static_scalarization_response_mapping (NULL) |
static const IntRealMatrixMap * | static_levQoisamplesmatrixMap (NULL) |
static const short * | static_cov_approximation_type (NULL) |
static const Real * | static_mu_four_L (NULL) |
static const Real * | static_mu_four_H (NULL) |
static const Real * | static_var_L (NULL) |
static const Real * | static_var_H (NULL) |
static const Real * | static_Ax (NULL) |
NOWPACOptimizer * | new_NOWPACOptimizer (ProblemDescDB &problem_db, Model &model) |
NOWPACOptimizer * | new_NOWPACOptimizer (Model &model) |
NPSOLOptimizer * | new_NPSOLOptimizer (ProblemDescDB &problem_db) |
NPSOLOptimizer * | new_NPSOLOptimizer1 (Model &model) |
NPSOLOptimizer * | new_NPSOLOptimizer2 (Model &model, int derivative_level, Real conv_tol) |
NPSOLOptimizer * | new_NPSOLOptimizer3 (const RealVector &initial_point, const RealVector &var_lower_bnds, const RealVector &var_upper_bnds, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lower_bnds, const RealVector &lin_ineq_upper_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_targets, const RealVector &nonlin_ineq_lower_bnds, const RealVector &nonlin_ineq_upper_bnds, const RealVector &nonlin_eq_targets, void(*user_obj_eval)(int &, int &, double *, double &, double *, int &), void(*user_con_eval)(int &, int &, int &, int &, int *, double *, double *, double *, int &), int derivative_level, Real conv_tol) |
NPSOLOptimizer * | new_NPSOLOptimizer (ProblemDescDB &problem_db, Model &model) |
NPSOLOptimizer * | new_NPSOLOptimizer (Model &model) |
NPSOLOptimizer * | new_NPSOLOptimizer (Model &model, int, Real) |
NPSOLOptimizer * | new_NPSOLOptimizer (const RealVector &initial_point, const RealVector &var_lower_bnds, const RealVector &var_upper_bnds, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lower_bnds, const RealVector &lin_ineq_upper_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_targets, const RealVector &nonlin_ineq_lower_bnds, const RealVector &nonlin_ineq_upper_bnds, const RealVector &nonlin_eq_targets, void(*user_obj_eval)(int &, int &, double *, double &, double *, int &), void(*user_con_eval)(int &, int &, int &, int &, int *, double *, double *, double *, int &), int derivative_level, Real conv_tol) |
void | start_dakota_heartbeat (int) |
void | dak_sigcatch (int sig) |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, ParallelLevel &pl) |
MPIUnpackBuffer extraction operator for ParallelLevel. Calls read(MPIUnpackBuffer&). | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const ParallelLevel &pl) |
MPIPackBuffer insertion operator for ParallelLevel. Calls write(MPIPackBuffer&). | |
std::istream & | operator>> (std::istream &s, ParamResponsePair &pair) |
std::istream extraction operator for ParamResponsePair | |
std::ostream & | operator<< (std::ostream &s, const ParamResponsePair &pair) |
std::ostream insertion operator for ParamResponsePair | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, ParamResponsePair &pair) |
MPIUnpackBuffer extraction operator for ParamResponsePair. | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const ParamResponsePair &pair) |
MPIPackBuffer insertion operator for ParamResponsePair. | |
bool | operator== (const ParamResponsePair &pair1, const ParamResponsePair &pair2) |
equality operator for ParamResponsePair More... | |
bool | operator!= (const ParamResponsePair &pair1, const ParamResponsePair &pair2) |
inequality operator for ParamResponsePair More... | |
void | copy_gradient (int const fun_idx, std::vector< std::vector< double >> const &source, RealMatrix &dest) |
void | copy_hessian (std::vector< std::vector< double >> const &source, RealSymMatrix &dest) |
static void | Bad_name (const String &entry_name, const String &where) |
static void | Locked_db () |
static void | Null_rep (const String &who) |
std::pair< std::string, std::string > | split_entry_name (const std::string &entry_name, const std::string &context_msg) |
boost::regex | PARAMS_TOKEN ("\\{PARAMETERS\\}") |
boost::regex | RESULTS_TOKEN ("\\{RESULTS\\}") |
String | substitute_params_and_results (const String &driver, const String ¶ms, const String &results) |
Substitute parameters and results file names into driver strings. | |
MPIUnpackBuffer & | operator>> (MPIUnpackBuffer &s, ProgramOptions &p_opt) |
MPIUnpackBuffer extraction operator. | |
MPIPackBuffer & | operator<< (MPIPackBuffer &s, const ProgramOptions &p_opt) |
MPIPackBuffer insertion operator. | |
bool | set_compare (const ParamResponsePair &database_pr, const ActiveSet &search_set) |
search function for a particular ParamResponsePair within a PRPList based on ActiveSet content (request vector and derivative variables vector) More... | |
bool | id_vars_exact_compare (const ParamResponsePair &database_pr, const ParamResponsePair &search_pr) |
search function for a particular ParamResponsePair within a PRPMultiIndex More... | |
std::size_t | hash_value (const ParamResponsePair &prp) |
hash_value for ParamResponsePairs stored in a PRPMultiIndex | |
PRPCacheHIter | hashedCacheBegin (PRPCache &prp_cache) |
hashed definition of cache begin | |
PRPCacheHIter | hashedCacheEnd (PRPCache &prp_cache) |
hashed definition of cache end | |
PRPQueueHIter | hashedQueueBegin (PRPQueue &prp_queue) |
hashed definition of queue begin | |
PRPQueueHIter | hashedQueueEnd (PRPQueue &prp_queue) |
hashed definition of queue end | |
PRPCacheHIter | lookup_by_val (PRPMultiIndexCache &prp_cache, const ParamResponsePair &search_pr) |
find a ParamResponsePair based on the interface id, variables, and ActiveSet search data within search_pr. More... | |
PRPCacheHIter | lookup_by_val (PRPMultiIndexCache &prp_cache, const String &search_interface_id, const Variables &search_vars, const ActiveSet &search_set) |
find a ParamResponsePair within a PRPMultiIndexCache based on the interface id, variables, and ActiveSet search data | |
PRPCacheOIter | lookup_by_nearby_val (PRPMultiIndexCache &prp_cache, const String &search_interface_id, const Variables &search_vars, const ActiveSet &search_set, Real tol) |
PRPCacheOIter | lookup_by_ids (PRPMultiIndexCache &prp_cache, const IntStringPair &search_ids) |
find a ParamResponsePair within a PRPMultiIndexCache based on search_ids (i.e. std::pair<eval_id,interface_id>) search data | |
PRPCacheOIter | lookup_by_ids (PRPMultiIndexCache &prp_cache, const IntStringPair &search_ids, const ParamResponsePair &search_pr) |
PRPQueueHIter | lookup_by_val (PRPMultiIndexQueue &prp_queue, const ParamResponsePair &search_pr) |
find a ParamResponsePair based on the interface id, variables, and ActiveSet search data within search_pr. More... | |
PRPQueueHIter | lookup_by_val (PRPMultiIndexQueue &prp_queue, const String &search_interface_id, const Variables &search_vars, const ActiveSet &search_set) |
find a ParamResponsePair within a PRPMultiIndexQueue based on interface id, variables, and ActiveSet search data | |
PRPQueueOIter | lookup_by_eval_id (PRPMultiIndexQueue &prp_queue, int search_id) |
find a ParamResponsePair within a PRPMultiIndexQueue based on search_id (i.e. integer eval_id) search data | |
void | print_usage (std::ostream &s) |
print restart utility help message | |
void | print_restart (StringArray pos_args, String print_dest) |
print a restart file More... | |
void | print_restart_pdb (StringArray pos_args, String print_dest) |
print a restart file (PDB format) More... | |
void | print_restart_tabular (StringArray pos_args, String print_dest, unsigned short tabular_format, int tabular_precision) |
print a restart file (tabular format) More... | |
void | read_neutral (StringArray pos_args) |
read a restart file (neutral file format) More... | |
void | repair_restart (StringArray pos_args, String identifier_type) |
repair a restart file by removing corrupted evaluations More... | |
void | concatenate_restart (StringArray pos_args) |
concatenate multiple restart files More... | |
String | method_results_hdf5_link_name (const StrStrSizet &iterator_id) |
Create a method results name (HDF5 link name) from iterator_id. | |
String | method_hdf5_link_name (const StrStrSizet &iterator_id) |
Create a method name (HDF5 link name) from iterator_id. | |
String | execution_hdf5_link_name (const StrStrSizet &iterator_id) |
Create an execution name (HDF5 link name) from iterator_id. | |
String | object_hdf5_link_name (const StrStrSizet &iterator_id, const StringArray &location) |
template<typename ScaleType > | |
String | scale_hdf5_link_name (const StrStrSizet &iterator_id, const StringArray &location, const ScaleType &scale) |
Create a scale name (hdf5 link name) for a scale from an iterator_id, the name of the result, the name of the response (can be empty), and the scale itself. | |
template<typename T > | |
void | expand_for_fields_sdv (const SharedResponseData &srd, const T &src_array, const String &src_desc, bool allow_by_element, T &expanded_array) |
expand primary response specs in SerialDenseVectors, e.g. scales, for fields no change on empty, expands 1 and num_groups, copies num_elements | |
template<typename T > | |
void | expand_for_fields_stl (const SharedResponseData &srd, const T &src_array, const String &src_desc, bool allow_by_element, T &expanded_array) |
expand primary response specs in STL containers, e.g. scale types, for fields no change on empty, expands 1 and num_groups, copies num_elements | |
static HANDLE * | wait_setup (std::map< pid_t, int > *M, size_t *pn) |
static int | wait_for_one (size_t n, HANDLE *h, int req1, size_t *pi) |
void | gauss_legendre_pts_wts_1D (int level, RealVector &result_0, RealVector &result_1) |
void | lagrange_interpolation_1d (const RealVector &samples, const RealVector &abscissa, const RealVector &values, RealVector &result) |
void | kronecker_product_2d (const RealMatrix &matrix1, const RealMatrix &matrix2, RealMatrix &matrix) |
void | get_chebyshev_points (int order, RealVector &points) |
void | chebyshev_derivative_matrix (int order, RealMatrix &derivative_matrix, RealVector &points) |
int | salinas_main (int argc, char *argv[], MPI_Comm *comm) |
subroutine interface to SALINAS simulation code | |
Real | std_normal_coverage_inverse (const Real coverage) |
Given a required coverage c \in [0,1], this routine computes the value b such that. More... | |
Real | computeDSTIEN_conversion_factor (const size_t number_of_samples, const Real alpha) |
This routine computes the multiplicative conversion factor to be applied to the sample standard deviation in order to get the standard deviation corresponding to the 'two sided tolerance interval equivalent normal' (DSTIEN). More... | |
void | computeDSTIEN (const IntResponseMap &resp_samples, const Real coverage, const Real alpha, size_t &num_valid_samples, RealVector &dstien_mus, Real &delta_mf, RealVector &sample_sigmas, RealVector &dstien_sigmas) |
This routine computes the r averages and r standard deviations corresponding to the 'two sided tolerance interval equivalent normal' (DSTIEN). More... | |
std::string | get_cwd_str () |
std::vector< std::string > | get_pathext () |
bool | contains (const bfs::path &dir_path, const std::string &file_name, boost::filesystem::path &complete_filepath) |
Variables | |
PRPCache | data_pairs |
contains all parameter/response pairs. | |
double | PI = boost::math::constants::pi<double>() |
constant pi | |
double | HALF_LOG_2PI = std::log(2.0*PI)/2.0 |
constant log(2*pi)/2.0 | |
short | abort_mode = ABORT_EXITS |
by default Dakota exits or calls MPI_Abort on errors More... | |
std::ostream * | dakota_cout = &std::cout |
DAKOTA stdout initially points to std::cout, but may be redirected to a tagged ofstream if there are concurrent iterators. | |
std::ostream * | dakota_cerr = &std::cerr |
DAKOTA stderr initially points to std::cerr, but may be redirected to a tagged ofstream if there are concurrent iterators. | |
ResultsManager | iterator_results_db |
Global results database for iterator results. | |
EvaluationStore | evaluation_store_db |
Global database for evaluation storage. | |
int | write_precision = 10 |
used in ostream data output functions (restart_util.cpp overrides default value) | |
MPIManager | dummy_mpi_mgr |
dummy MPIManager for ref initialization | |
ProgramOptions | dummy_prg_opt |
dummy ProgramOptions for ref initialization | |
OutputManager | dummy_out_mgr |
dummy OutputManager for ref initialization | |
ParallelLibrary | dummy_lib |
dummy ParallelLibrary for ref initialization | |
ProblemDescDB | dummy_db |
dummy ProblemDescDB for ref initialization | |
int | mc_ptr_int = 0 |
global pointer for ModelCenter API | |
int | dc_ptr_int = 0 |
global pointer for ModelCenter eval DB | |
ProblemDescDB * | Dak_pddb |
set by ProblemDescDB, for use in parsing | |
const size_t | SZ_MAX = std::numeric_limits<size_t>::max() |
special value returned by index() when entry not found | |
const size_t | _NPOS = SZ_MAX |
const double | BIG_REAL_BOUND = 1.0e+30 |
bound beyond which constraints are considered inactive | |
static UShortStrBimap | method_map |
bimap between method enums and strings; only used in this compilation unit | |
static UShortStrBimap | submethod_map |
bimap between sub-method enums and strings; only used in this compilation unit (using bimap for consistency, though at time of addition, only uni-directional mapping is supported) More... | |
Interface | dummy_interface |
dummy Interface object used for mandatory reference initialization or default virtual function return by reference when a real Interface instance is unavailable | |
Model | dummy_model |
dummy Model object used for mandatory reference initialization or default virtual function return by reference when a real Model instance is unavailable | |
Iterator | dummy_iterator |
dummy Iterator object used for mandatory reference initialization or default virtual function return by reference when a real Iterator instance is unavailable | |
Dakota_funcs * | DF |
Dakota_funcs | DakFuncs0 |
const Real | REAL_DSET_FILL_VAL = NAN |
const int | INT_DSET_FILL_VAL = INT_MAX |
const String | STR_DSET_FILL_VAL = "" |
const int | HDF5_CHUNK_SIZE = 40000 |
const char * | FIELD_NAMES [] |
const int | NUMBER_OF_FIELDS = 23 |
static const int | MPI_COMM_WORLD = 1 |
static const int | MPI_COMM_NULL = 0 |
static const int | MPI_COMM_SELF = 92 |
static const int | MPI_ANY_TAG = -1 |
static void * | MPI_REQUEST_NULL = NULL |
FILE * | nidrin |
const size_t | NIDR_MAX_ERROR_LEN = 8192 |
maximum error length is roughly 100 lines at 80 char; using fixed error length instead of investing in converting to vsnprintf (C++11) | |
static const char * | auto_log_scaletypes [] = { "auto", "log", "none", 0 } |
static Var_uinfo | CAUVLbl [CAUVar_Nkinds] |
static Var_uinfo | DAUIVLbl [DAUIVar_Nkinds] |
static Var_uinfo | DAUSVLbl [DAUSVar_Nkinds] |
static Var_uinfo | DAURVLbl [DAURVar_Nkinds] |
static Var_uinfo | CEUVLbl [CEUVar_Nkinds] |
static Var_uinfo | DEUIVLbl [DEUIVar_Nkinds] |
static Var_uinfo | DEUSVLbl [DEUSVar_Nkinds] |
static Var_uinfo | DEURVLbl [DEURVar_Nkinds] |
static Var_uinfo | DiscSetLbl [DiscSetVar_Nkinds] |
static VarLabelChk | DesignAndStateLabelsCheck [] |
Variables label array designations for design and state. All non-uncertain variables need to be in this array. Used in check_variables_node to check lengths and make_variable_defaults to build labels. More... | |
static VLreal | VLUncertainReal [NUM_UNC_REAL_CONT] |
Variables labels/bounds/values check array for real-valued uncertain variables; one array entry per contiguous container. These associate the individual variables given by, e.g., CAUVLbl, with the contiguous container in which they are stored. More... | |
static VLint | VLUncertainInt [NUM_UNC_INT_CONT] |
Variables labels/bounds/values check array for integer-valued uncertain variables; one array entry per contiguous container. These associate the individual variables given by, e.g., DAUIVLbl, with the contiguous container in which they are stored. More... | |
static VLstr | VLUncertainStr [NUM_UNC_STR_CONT] |
Variables labels/bounds/values check array for string-valued uncertain variables; one array entry per contiguous container. These associate the individual variables given by, e.g., DAUSVLbl, with the contiguous container in which they are stored. More... | |
static int | VLR_aleatory [NUM_UNC_REAL_CONT] = { 1, 0, 1, 0 } |
which uncertain real check array containers are aleatory (true = 1) | |
static int | VLI_aleatory [NUM_UNC_INT_CONT] = { 1, 0 } |
which uncertain integer check array containers are aleatory (true = 1) | |
static int | VLS_aleatory [NUM_UNC_STR_CONT] = { 1, 0 } |
which uncertain string check array containers are aleatory (true = 1) | |
static Var_check | var_mp_check_cv [] |
static Var_check | var_mp_check_dset [] |
static Var_check | var_mp_check_cau [] |
static Var_check | var_mp_check_daui [] |
static Var_check | var_mp_check_daus [] |
static Var_check | var_mp_check_daur [] |
static Var_check | var_mp_check_ceu [] |
static Var_check | var_mp_check_deui [] |
static Var_check | var_mp_check_deus [] |
static Var_check | var_mp_check_deur [] |
static Var_rcheck | var_mp_cbound [] |
This is used within check_variables_node(): Var_RealBoundIPCheck() is applied to validate bounds and initial points. More... | |
static Var_icheck | var_mp_drange [] |
This is used in check_variables_node(): Var_IntBoundIPCheck() is applied to validate bounds and initial points, and in make_variable_defaults(): Vgen_* is called to infer bounds. More... | |
TKFactoryDIPC | tk_factory_dipc ("dakota_dipc_tk") |
Static registration of RW TK with the QUESO TK factory. | |
TKFactoryDIPCLogit | tk_factory_dipclogit ("dakota_dipc_logit_tk") |
Static registration of Logit RW TK with the QUESO TK factory. | |
static time_t | start_time |
const double | SCALING_MIN_SCALE = 1.0e10*DBL_MIN |
minimum value allowed for a characteristic value when scaling; ten orders of magnitude greater than DBL_MIN | |
const double | SCALING_MIN_LOG = SCALING_MIN_SCALE |
lower bound on domain of logarithm function when scaling | |
const double | SCALING_LOGBASE = 10.0 |
logarithm base to be used when scaling | |
const double | SCALING_LN_LOGBASE = std::log(SCALING_LOGBASE) |
ln(SCALING_LOGBASE); needed in transforming variables in several places | |
const char * | SCI_FIELD_NAMES [] |
const int | SCI_NUMBER_OF_FIELDS = 26 |
const int | LARGE_SCALE = 100 |
a (perhaps arbitrary) definition of large scale; choose a large-scale algorithm if numVars >= LARGE_SCALE | |
const double | POW_VAL = 1.0 |
offset used text_book exponent: 1.0 is nominal, 1.4 used for B&B testing | |
const String | LEV_REF = "Dakota" |
levenshtein_distance computes the distance between its argument and this | |
The primary namespace for DAKOTA.
The Dakota namespace encapsulates the core classes of the DAKOTA framework and prevents name clashes with third-party libraries from methods and packages. The C++ source files defining these core classes reside in Dakota/src as *.[ch]pp.
typedef bmi::multi_index_container<Dakota::ParamResponsePair, bmi::indexed_by< bmi::ordered_non_unique<bmi::tag<ordered>, bmi::const_mem_fun<Dakota::ParamResponsePair, const IntStringPair&, &Dakota::ParamResponsePair::eval_interface_ids> >, bmi::hashed_non_unique<bmi::tag<hashed>, bmi::identity<Dakota::ParamResponsePair>, partial_prp_hash, partial_prp_equality> > > PRPMultiIndexCache |
Boost Multi-Index Container for globally caching ParamResponsePairs.
For a global cache, both evaluation and interface id's are used for tagging ParamResponsePair records.
typedef bmi::multi_index_container<Dakota::ParamResponsePair, bmi::indexed_by< bmi::ordered_unique<bmi::tag<ordered>, bmi::const_mem_fun<Dakota::ParamResponsePair, int, &Dakota::ParamResponsePair::eval_id> >, bmi::hashed_non_unique<bmi::tag<hashed>, bmi::identity<Dakota::ParamResponsePair>, partial_prp_hash, partial_prp_equality> > > PRPMultiIndexQueue |
Boost Multi-Index Container for locally queueing ParamResponsePairs.
For a local queue, interface id's are expected to be consistent, such that evaluation id's are sufficient for tracking particular evaluations.
anonymous enum |
anonymous enum |
anonymous enum |
anonymous enum |
define special values for SurrogateModel::responseMode
Enumerator | |
---|---|
SUBMETHOD_COLLABORATIVE | Type of hybrid meta-iterator: |
anonymous enum |
anonymous enum |
CommandShell & flush | ( | CommandShell & | shell | ) |
convenient shell manipulator function to "flush" the shell
global convenience function for manipulating the shell; invokes the class member flush function.
References CommandShell::flush().
Referenced by HDF5IOHelper::append_empty(), HDF5IOHelper::create_dataset(), HDF5IOHelper::create_empty_dataset(), HDF5IOHelper::create_group(), SysCallApplicInterface::spawn_analysis_to_shell(), SysCallApplicInterface::spawn_evaluation_to_shell(), SysCallApplicInterface::spawn_input_filter_to_shell(), and SysCallApplicInterface::spawn_output_filter_to_shell().
void Dakota::apply_matrix_partial | ( | const MatrixType & | M, |
const VectorType & | v1, | ||
VectorType & | v2 | ||
) |
Applies a RealMatrix to a vector (or subset of vector) v1.
Optionally works with a subset of the passed vectors; applies the matrix M to the first M.numCols() entries in v1, and populates the first M.numRows entries in v2.
References abort_handler().
Referenced by apply_linear_constraints(), DakotaROLIneqConstraintsHess::applyAdjointHessian(), DakotaROLEqConstraintsHess::applyAdjointHessian(), DakotaROLIneqConstraintsGrad::applyJacobian(), DakotaROLEqConstraintsGrad::applyJacobian(), and DakotaROLObjectiveHess::hessVec().
void Dakota::apply_matrix_transpose_partial | ( | const RealMatrix & | M, |
const VectorType & | v1, | ||
VectorType & | v2 | ||
) |
Applies transpose of a RealMatrix to a vector (or subset of vector) v1.
Optionally works with a subset of the passed vectors; applies the matrix M^T to the first M.numRows() entries in v1, and populates the first M.numCols() entries in v2.
References abort_handler().
Referenced by DakotaROLIneqConstraintsGrad::applyAdjointJacobian(), and DakotaROLEqConstraintsGrad::applyAdjointJacobian().
void abort_throw_or_exit | ( | int | dakota_code | ) |
throw or exit depending on abort_mode
Throw a system_error or call std::exit, with (256 + dakota_code), where dakota_code < 0
RATIONALE: Avoid common "standard" exit codes and signals (signum.h) as well as uncaught signals / uncatchable SIGKILL which return 128
Return a value in [0,255] since some operating systems only return the 8 least significant bits, leaves [193, 255] for Dakota. This should make return codes consistent cross-platform.
References abort_mode.
Referenced by abort_handler(), and ParallelLibrary::abort_helper().
void register_signal_handlers | ( | ) |
Tie various signal handlers to Dakota's abort_handler function.
Global function to register signal handlers at top-level.
References abort_handler().
Referenced by main().
void mpi_debug_hold | ( | ) |
T Dakota::abort_handler_t | ( | int | code | ) |
Templatized abort_handler_t method that allows for convenient return from methods that otherwise have no sensible return from error clauses. Usage: MyType& method() { return abort_handler<MyType&>(-1); }
References abort_handler().
void svd | ( | RealMatrix & | matrix, |
RealVector & | singular_vals, | ||
RealMatrix & | v_trans, | ||
bool | compute_vectors = true |
||
) |
Compute the SVD of an arbitrary matrix A = USV^T.
Uses Teuchos::LAPACK.GESVD() to compute the singular value decomposition, overwriting A with the left singular vectors U (or destroying A if compute_vectors = false); optionally returns right singular vectors in v_trans.
References abort_handler().
Referenced by ProbabilityTransformModel::acv_index_to_corr_index(), ExperimentData::add_data(), Model::assign_max_strings(), NonDBayesCalibration::augment_gradient_with_log_prior(), NonDBayesCalibration::augment_hessian_with_log_prior(), NonDAdaptImpSampling::calculate_statistics(), NonDDREAMBayesCalibration::calibrate(), NonDWASABIBayesCalibration::calibrate(), PebbldBranchSub::candidateSolution(), ActiveSubspaceModel::compute_bing_li_criterion(), ActiveSubspaceModel::compute_constantine_metric(), ActiveSubspaceModel::compute_svd(), Variables::continuous_variable_id(), Variables::continuous_variable_ids(), Variables::continuous_variable_label(), Variables::continuous_variable_labels(), Variables::continuous_variable_type(), Variables::continuous_variable_types(), Model::discrete_int_sets(), Variables::discrete_int_variable_label(), Variables::discrete_int_variable_labels(), Variables::discrete_int_variable_type(), Variables::discrete_int_variable_types(), Variables::discrete_real_variable_label(), Variables::discrete_real_variable_labels(), Variables::discrete_real_variable_type(), Variables::discrete_real_variable_types(), Model::discrete_set_int_values(), Model::discrete_set_real_values(), Model::discrete_set_string_values(), Variables::discrete_string_variable_label(), Variables::discrete_string_variable_labels(), Variables::discrete_string_variable_type(), Variables::discrete_string_variable_types(), ParamStudy::distribute(), ExperimentData::ExperimentData(), QMEApproximation::find_scaled_coefficients(), NonDAdaptImpSampling::generate_samples(), Constraints::get_constraints(), DataTransformModel::get_hyperparam_vc_index(), Variables::inactive_continuous_variable_ids(), Variables::inactive_continuous_variable_labels(), Variables::inactive_continuous_variable_types(), Variables::inactive_discrete_int_variable_labels(), Variables::inactive_discrete_int_variable_types(), Variables::inactive_discrete_real_variable_labels(), Variables::inactive_discrete_real_variable_types(), Variables::inactive_discrete_string_variable_labels(), Variables::inactive_discrete_string_variable_types(), NonDLHSSampling::increm_lhs_parameter_set(), RecastModel::init_constraints(), DataTransformModel::init_continuous_vars(), SimulationModel::initialize_solution_control(), MinimizerAdapterModel::initialize_variables(), ExperimentData::load_data(), MixedVarConstraints::MixedVarConstraints(), NonDSampling::mode_bits(), NonDSampling::mode_counts(), Model::Model(), NestedModel::NestedModel(), NonDInterval::NonDInterval(), NonDLHSSampling::NonDLHSSampling(), SharedVariablesData::operator=(), Optimizer::Optimizer(), SensAnalysisGlobal::partial_corr(), ParamStudy::pre_run(), NonDBayesCalibration::prior_sample(), Constraints::reshape(), SubspaceModel::resize_variable_totals(), NonDSampling::sample_to_variables(), NonDAdaptImpSampling::select_rep_points(), SharedVariablesData::SharedVariablesData(), singular_values(), size_and_fill(), NonDQUESOBayesCalibration::specify_prior(), PebbldBranchSub::splitComputation(), SubspaceModel::uncertain_vars_to_subspace(), SurrogateModel::update_distributions_from_model(), NonDExpansion::update_final_statistics_gradients(), SurrogateModel::update_model_distributions(), NestedModel::update_sub_model(), ReducedBasis::update_svd(), DataTransformModel::variables_expand(), RandomFieldModel::variables_resize(), and NonDSampling::variables_to_sample().
int qr | ( | RealMatrix & | A | ) |
Compute an in-place QR factorization A = QR.
Uses Teuchos::LAPACK.GEQRF() to compute the QR decomposition, overwriting A with the transformations and R.
References abort_handler().
Referenced by SensAnalysisGlobal::partial_corr().
int qr_rsolve | ( | const RealMatrix & | q_r, |
bool | transpose, | ||
RealMatrix & | rhs | ||
) |
Perform a multiple right-hand sides Rinv * rhs solve using the R from a qr factorization.
Returns info > 0 if the matrix is singular
Uses Teuchos::LAPACK.TRTRS() to perform a triangular backsolve
References abort_handler().
Referenced by SensAnalysisGlobal::partial_corr().
int generate_system_seed | ( | ) |
clock microseconds-based random seed in [1, 1000000]
Mimics DDACE timeSeed(), which returns the trailing microseconds on the time of day clock. Historically, most algorithms opted for DDACE, Utilib, std::clock(), in that order.
Referenced by NonDWASABIBayesCalibration::calibrate(), NonDQuadrature::get_parameter_sets(), PSUADEDesignCompExp::get_parameter_sets(), FSUDesignCompExp::get_parameter_sets(), NonDSampling::initialize_sample_driver(), and NonDBayesCalibration::NonDBayesCalibration().
inequality operator for ActiveSet
inequality operator
equality operator for Envelope is true if same letter instance
equality operator (detect same letter instance)
References Model::modelRep.
inequality operator for Envelope is true if different letter instance
inequality operator (detect different letter instances)
References Model::modelRep.
void Dakota::get_initial_values | ( | const Model & | model, |
VecT & | values | ||
) |
Adapter for copying initial continuous variables values from a Dakota Model into TPL vectors
References Model::continuous_variables(), and Model::cv().
Referenced by ROLOptimizer::set_problem().
bool Dakota::get_bounds | ( | const RealVector & | lower_source, |
const RealVector & | upper_source, | ||
VecT & | lower_target, | ||
VecT & | upper_target, | ||
Real | big_real_bound_size, | ||
Real | no_value | ||
) |
Adapter for copying continuous variables data from Dakota RealVector into TPL vectors
Referenced by get_linear_constraints(), get_variable_bounds(), and ROLOptimizer::set_problem().
void Dakota::get_bounds | ( | const Model & | model, |
VecT & | lower_target, | ||
VecT & | upper_target | ||
) |
Adapter for copying continuous variables data from a Dakota Model into TPL vectors
References Model::continuous_lower_bounds(), and Model::continuous_upper_bounds().
void Dakota::get_bounds | ( | const SetT & | source_set, |
VecT & | lower_target, | ||
VecT & | upper_target, | ||
int | target_offset | ||
) |
Adapter originating from (and somewhat specialized based on) APPSOptimizer for copying discrete variables from a set-based Dakota container into TPL vectors
bool Dakota::get_mixed_bounds | ( | const MaskType & | mask_set, |
const SetArray & | source_set, | ||
const Teuchos::SerialDenseVector< OrdinalType, ScalarType > & | lower_source, | ||
const Teuchos::SerialDenseVector< OrdinalType, ScalarType > & | upper_source, | ||
VectorType2 & | lower_target, | ||
VectorType2 & | upper_target, | ||
ScalarType | bigBoundSize, | ||
ScalarType | no_value, | ||
int | target_offset = 0 |
||
) |
Adapter originating from (and somewhat specialized based on) APPSOptimizer for copying discrete integer variables data with bit masking from Dakota into TPL vectors
Referenced by get_variable_bounds().
bool Dakota::get_variable_bounds | ( | Model & | model, |
Real | big_real_bound_size, | ||
int | big_int_bound_size, | ||
typename AdapterT::VecT & | lower, | ||
typename AdapterT::VecT & | upper | ||
) |
Adapter originating from (and somewhat specialized based on) APPSOptimizer for copying heterogeneous bounded data from Dakota::Variables into concatenated TPL vectors
References Model::continuous_lower_bounds(), Model::continuous_upper_bounds(), Model::cv(), Model::discrete_int_lower_bounds(), Model::discrete_int_sets(), Model::discrete_int_upper_bounds(), Model::discrete_real_lower_bounds(), Model::discrete_real_upper_bounds(), Model::discrete_set_int_values(), Model::discrete_set_real_values(), Model::discrete_set_string_values(), Model::div(), Model::drv(), get_bounds(), and get_mixed_bounds().
int Dakota::configure_inequality_constraint_maps | ( | const Model & | model, |
Real | big_real_bound_size, | ||
CONSTRAINT_TYPE | ctype, | ||
IVecT & | map_indices, | ||
RVecT & | map_multipliers, | ||
RVecT & | map_offsets, | ||
Real | scaling = 1.0 |
||
) |
Adapter for configuring inequality constraint maps used when transferring data between Dakota and a TPL
Referenced by Optimizer::configure_constraint_maps().
void Dakota::configure_equality_constraint_maps | ( | Model & | model, |
CONSTRAINT_TYPE | ctype, | ||
IVecT & | indices, | ||
size_t | index_offset, | ||
RVecT & | multipliers, | ||
RVecT & | values, | ||
bool | make_one_sided | ||
) |
Adapter for configuring equality constraint maps used when transferring data between Dakota and a TPL
void Dakota::get_linear_constraints | ( | Model & | model, |
Real | big_real_bound_size, | ||
typename AdapterT::VecT & | lin_ineq_lower_bnds, | ||
typename AdapterT::VecT & | lin_ineq_upper_bnds, | ||
typename AdapterT::VecT & | lin_eq_targets, | ||
typename AdapterT::MatT & | lin_ineq_coeffs, | ||
typename AdapterT::MatT & | lin_eq_coeffs | ||
) |
Adapter based initially on APPSOptimizer for linear constraint maps and including matrix and bounds data; bundles a few steps together which could (should?) be broken into two or more adapters
References copy_data(), get_bounds(), Model::linear_eq_constraint_coeffs(), Model::linear_eq_constraint_targets(), Model::linear_ineq_constraint_coeffs(), Model::linear_ineq_constraint_lower_bounds(), and Model::linear_ineq_constraint_upper_bounds().
void Dakota::apply_linear_constraints | ( | const Model & | model, |
CONSTRAINT_EQUALITY_TYPE | etype, | ||
const VecT & | in_vals, | ||
VecT & | values, | ||
bool | adjoint = false |
||
) |
Data adapter to transfer data from Dakota to third-party opt packages. The vector values might contain additional constraints; the first entries corresponding to linear constraints are populated by apply.
References apply_matrix_partial(), Model::linear_eq_constraint_coeffs(), Model::linear_eq_constraint_targets(), Model::linear_ineq_constraint_coeffs(), Model::num_linear_eq_constraints(), and Model::num_linear_ineq_constraints().
Referenced by DakotaROLIneqConstraints::value(), and DakotaROLEqConstraints::value().
void Dakota::apply_nonlinear_constraints | ( | const Model & | model, |
CONSTRAINT_EQUALITY_TYPE | etype, | ||
const VecT & | in_vals, | ||
VecT & | values, | ||
bool | adjoint = false |
||
) |
Data adapter to transfer data from Dakota to third-party opt packages
If adjoint = false, (perhaps counter-intuitively) apply the Jacobian (transpose of the gradient) to in_vals, which should be of size num_continuous_vars: J*x = G'*x, resulting in num_nonlinear_const values getting populated (possibly a subset of the total constraint vector).
If adjoint = true, apply the adjoint Jacobian (gradient) to the nonlinear constraint portion of in_vals, which should be of size at least num_nonlinear_consts: J'*y = G*y, resulting in num_continuous_vars values getting populated.
References Model::current_response(), Model::cv(), Response::function_gradients(), Model::num_linear_eq_constraints(), Model::num_linear_ineq_constraints(), Model::num_nonlinear_eq_constraints(), and Model::num_nonlinear_ineq_constraints().
Referenced by DakotaROLIneqConstraintsGrad::applyAdjointJacobian(), DakotaROLEqConstraintsGrad::applyAdjointJacobian(), DakotaROLIneqConstraintsGrad::applyJacobian(), and DakotaROLEqConstraintsGrad::applyJacobian().
void Dakota::set_best_responses | ( | typename AdapterT::OptT & | optimizer, |
const Model & | model, | ||
bool | set_objectives, | ||
size_t | num_user_primary_fns, | ||
const std::vector< int > | constraint_map_indices, | ||
const std::vector< double > | constraint_map_multipliers, | ||
const std::vector< double > | constraint_map_offsets, | ||
ResponseArray & | response_array | ||
) |
Data adapter for use by third-party opt packages to transfer response data to Dakota
References Model::num_nonlinear_eq_constraints(), Model::num_nonlinear_ineq_constraints(), and Model::primary_response_fn_sense().
copy appropriate slices of source vector to Dakota::Variables
References Variables::continuous_variables(), copy_data_partial(), Variables::cv(), Model::discrete_int_sets(), Variables::discrete_int_variables(), Variables::discrete_real_variables(), Model::discrete_set_int_values(), Model::discrete_set_real_values(), Model::discrete_set_string_values(), Variables::discrete_string_variable(), Variables::div(), Variables::drv(), Variables::dsv(), and set_index_to_value().
Referenced by NomadOptimizer::Evaluator::eval_x().
void Dakota::get_variables | ( | Model & | model, |
VectorType & | vec | ||
) |
copy the various pieces comprising Dakota::Variables into a concatenated TPL vector
References abort_handler(), Model::continuous_variables(), copy_data_partial(), Model::cv(), Model::discrete_int_sets(), Model::discrete_int_variables(), Model::discrete_real_variables(), Model::discrete_set_int_values(), Model::discrete_set_real_values(), Model::discrete_set_string_values(), Model::discrete_string_variables(), Model::div(), Model::drv(), and Model::dsv().
void Dakota::get_responses | ( | const Model & | model, |
const RealVector & | dak_fn_vals, | ||
const std::vector< int > | constraint_map_indices, | ||
const std::vector< double > | constraint_map_multipliers, | ||
const std::vector< double > | constraint_map_offsets, | ||
vectorType & | f_vec, | ||
vectorType & | cEqs_vec, | ||
vectorType & | cIneqs_vec | ||
) |
Data adapter to transfer data from Dakota to third-party opt packages
References Model::num_nonlinear_eq_constraints(), and Model::primary_response_fn_sense().
Referenced by NomadOptimizer::Evaluator::eval_x(), and Optimizer::get_responses_from_dakota().
void Dakota::get_nonlinear_eq_constraints | ( | const Model & | model, |
VecT & | values, | ||
Real | scale, | ||
int | offset = -1 |
||
) |
Data adapter to transfer data from Dakota to third-party opt packages
References Model::current_response(), Response::function_values(), Model::nonlinear_eq_constraint_targets(), Model::num_linear_eq_constraints(), Model::num_nonlinear_eq_constraints(), and Model::num_nonlinear_ineq_constraints().
Referenced by DakotaROLEqConstraints::value().
void Dakota::get_nonlinear_eq_constraints | ( | Model & | model, |
const RealVector & | curr_resp_vals, | ||
VecT & | values, | ||
Real | scale, | ||
int | offset = 0 |
||
) |
Data adapter to transfer data from Dakota to third-party opt packages
References Model::nonlinear_eq_constraint_targets(), and Model::num_nonlinear_eq_constraints().
void Dakota::get_nonlinear_ineq_constraints | ( | const Model & | model, |
VecT & | values | ||
) |
Data adapter to transfer data from Dakota to third-party opt packages (ROL-specific)
References copy_data_partial(), Model::current_response(), Response::function_values(), Model::num_linear_ineq_constraints(), and Model::num_nonlinear_ineq_constraints().
void Dakota::get_nonlinear_bounds | ( | Model & | model, |
VecT & | nonlin_ineq_lower, | ||
VecT & | nonlin_ineq_upper, | ||
VecT & | nonlin_eq_targets | ||
) |
Would like to combine the previous adapter with this one (based on APPSOptimizer and COLINOptimizer) and then see how much more generalization is needed to support other TPLs like JEGA.
Data adapter to transfer data from Dakota to third-party opt packages
References copy_data(), Model::nonlinear_eq_constraint_targets(), Model::nonlinear_ineq_constraint_lower_bounds(), and Model::nonlinear_ineq_constraint_upper_bounds().
Referenced by COLINApplication::set_problem().
inequality operator for Response
inequality operator
inequality operator for Variables
strict inequality operator
|
inline |
free function to write Variables data vectors in input spec ordering
written for arbitrary types, but typical use will be ScalarType1 = Real, ScalarType2 = int, ScalarType3 = string, and ScalarType4 = int or Real.
Referenced by ParamStudy::pre_run().
|
inline |
free function to write Variables data vectors in input spec ordering
written for arbitrary types, but typical use will be ScalarType1 = Real, ScalarType2 = int, ScalarType3 = string, and ScalarType4 = int or Real.
void copy_field_data | ( | const RealVector & | fn_vals, |
RealMatrix & | fn_grad, | ||
const RealSymMatrixArray & | fn_hess, | ||
size_t | offset, | ||
size_t | num_fns, | ||
Response & | response | ||
) |
This assumes the souce gradient/Hessian are size less or equal to the destination response, and that the leading part is to be populated.
References Response::active_set_request_vector(), Response::function_gradient_view(), Response::function_hessian_view(), and Response::function_value().
Referenced by ExperimentData::scale_residuals().
void Dakota::copy_field_data | ( | const RealVector & | fn_vals, |
RealMatrix & | fn_grad, | ||
const RealSymMatrixArray & | fn_hess, | ||
size_t | offset, | ||
size_t | num_fns, | ||
short | total_asv, | ||
Response & | response | ||
) |
This assumes the souce gradient/Hessian are size less or equal to the destination response, and that the leading part is to be populated.
References Response::function_gradient_view(), Response::function_hessian_view(), and Response::function_value().
void symmetric_eigenvalue_decomposition | ( | const RealSymMatrix & | matrix, |
RealVector & | eigenvalues, | ||
RealMatrix & | eigenvectors | ||
) |
Computes the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
Eigenvalues are returned in ascending order.
References symmetric_eigenvalue_decomposition().
Referenced by NonDBayesCalibration::get_positive_definite_covariance_from_hessian(), and symmetric_eigenvalue_decomposition().
Real Dakota::getdist | ( | const RealVector & | x1, |
const RealVector & | x2 | ||
) |
Gets the Euclidean distance between x1 and x2
Referenced by mindist(), and mindistindx().
Real Dakota::mindist | ( | const RealVector & | x, |
const RealMatrix & | xset, | ||
int | except | ||
) |
Real Dakota::mindistindx | ( | const RealVector & | x, |
const RealMatrix & | xset, | ||
const IntArray & | indx | ||
) |
Gets the min distance between x and points in the set xset defined by the nindx values in indx.
References getdist().
Referenced by GaussProcApproximation::pointsel_add_sel().
Real Dakota::getRmax | ( | const RealMatrix & | xset | ) |
Gets the maximum of the min distance between each point and the rest of the set.
References mindist().
Referenced by GaussProcApproximation::pointsel_add_sel().
int Dakota::start_grid_computing | ( | char * | analysis_driver_script, |
char * | params_file, | ||
char * | results_file | ||
) |
sample function prototype for launching grid computing
int Dakota::stop_grid_computing | ( | ) |
sample function prototype for terminating grid computing
int Dakota::perform_analysis | ( | char * | iteration_num | ) |
sample function prototype for submitting a grid evaluation
string Dakota::asstring | ( | const T & | val | ) |
Creates a string from the argument val using an ostringstream.
This only gets used in this file and is only ever called with ints so no error checking is in place.
val | The value of type T to convert to a string. |
Referenced by JEGAOptimizer::LoadTheConstraints().
void start_dakota_heartbeat | ( | int | seconds | ) |
Heartbeat function provided by dakota_filesystem_utils; pass output interval in seconds, or -1 to use $DAKOTA_HEARTBEAT
Referenced by OutputManager::OutputManager().
|
inline |
equality operator for ParamResponsePair
equality operator
References ParamResponsePair::evalInterfaceIds, ParamResponsePair::prpResponse, and ParamResponsePair::prpVariables.
|
inline |
inequality operator for ParamResponsePair
inequality operator
|
inline |
search function for a particular ParamResponsePair within a PRPList based on ActiveSet content (request vector and derivative variables vector)
a global function to compare the ActiveSet of a particular database_pr (presumed to be in the global history list) with a passed in ActiveSet (search_set).
References ParamResponsePair::active_set(), ActiveSet::derivative_vector(), and ActiveSet::request_vector().
Referenced by lookup_by_val().
|
inline |
search function for a particular ParamResponsePair within a PRPMultiIndex
a global function to compare the interface id and variables of a particular database_pr (presumed to be in the global history list) with a passed in key of interface id and variables provided by search_pr.
References ParamResponsePair::interface_id(), and ParamResponsePair::variables().
Referenced by partial_prp_equality::operator()().
|
inline |
find a ParamResponsePair based on the interface id, variables, and ActiveSet search data within search_pr.
Lookup occurs in two steps: (1) PRPMultiIndexCache lookup based on strict equality in interface id and variables, and (2) set_compare() post-processing based on ActiveSet subset logic.
References ParamResponsePair::active_set(), and set_compare().
Referenced by NonDDREAMBayesCalibration::archive_acceptance_chain(), Minimizer::archive_best_results(), DataTransformModel::archive_submodel_responses(), NonDMUQBayesCalibration::cache_chain(), NonDQUESOBayesCalibration::cache_chain(), Model::db_lookup(), ApplicationInterface::duplication_detect(), SurrBasedLocalMinimizer::find_response(), Minimizer::local_recast_retrieve(), lookup_by_val(), Minimizer::print_best_eval_ids(), DiscrepancyCorrection::search_db(), and NonDLocalReliability::update_mpp_search_data().
|
inline |
find a ParamResponsePair based on the interface id, variables, and ActiveSet search data within search_pr.
Lookup occurs in two steps: (1) PRPMultiIndexQueue lookup based on strict equality in interface id and variables, and (2) set_compare() post-processing based on ActiveSet subset logic.
References ParamResponsePair::active_set(), and set_compare().
void print_restart | ( | StringArray | pos_args, |
String | print_dest | ||
) |
print a restart file
Usage: "dakota_restart_util print dakota.rst"
"dakota_restart_util to_neutral dakota.rst dakota.neu"
Prints all evals. in full precision to either stdout or a neutral file. The former is useful for ensuring that duplicate detection is successful in a restarted run (e.g., starting a new method from the previous best), and the latter is used for translating binary files between platforms.
References abort_handler(), ParamResponsePair::eval_id(), ParamResponsePair::write_annotated(), and write_precision.
Referenced by main().
void print_restart_pdb | ( | StringArray | pos_args, |
String | print_dest | ||
) |
print a restart file (PDB format)
Usage: "dakota_restart_util to_pdb dakota.rst dakota.pdb"
Unrolls all data associated with a particular tag for all evaluations and then writes this data in a tabular format (e.g., to a PDB database or MATLAB/TECPLOT data file).
References abort_handler(), Variables::continuous_variables(), Variables::discrete_int_variables(), Variables::discrete_real_variables(), and Response::function_values().
Referenced by main().
void print_restart_tabular | ( | StringArray | pos_args, |
String | print_dest, | ||
unsigned short | tabular_format, | ||
int | tabular_precision | ||
) |
print a restart file (tabular format)
Usage: "dakota_restart_util to_tabular dakota.rst dakota.txt"
Unrolls all data associated with a particular tag for all evaluations and then writes this data in a tabular format (e.g., to a PDB database or MATLAB/TECPLOT data file).
References abort_handler(), Variables::acv(), Variables::adiv(), Variables::adrv(), Variables::adsv(), Variables::all_continuous_variable_labels(), Variables::all_discrete_int_variable_labels(), Variables::all_discrete_real_variable_labels(), Variables::all_discrete_string_variable_labels(), Response::function_labels(), ParamResponsePair::interface_id(), ParamResponsePair::response(), ParamResponsePair::variables(), write_precision, ParamResponsePair::write_tabular(), and ParamResponsePair::write_tabular_labels().
Referenced by main().
void read_neutral | ( | StringArray | pos_args | ) |
read a restart file (neutral file format)
Usage: "dakota_restart_util from_neutral dakota.neu dakota.rst"
Reads evaluations from a neutral file. This is used for translating binary files between platforms.
References abort_handler(), and ParamResponsePair::read_annotated().
Referenced by main().
void repair_restart | ( | StringArray | pos_args, |
String | identifier_type | ||
) |
repair a restart file by removing corrupted evaluations
Usage: "dakota_restart_util remove 0.0 dakota_old.rst dakota_new.rst"
"dakota_restart_util remove_ids 2 7 13 dakota_old.rst
dakota_new.rst"
Repairs a restart file by removing corrupted evaluations. The identifier for evaluation removal can be either a double precision number (all evaluations having a matching response function value are removed) or a list of integers (all evaluations with matching evaluation ids are removed).
References abort_handler(), Response::active_set_request_vector(), contains(), ParamResponsePair::eval_id(), Response::function_values(), and ParamResponsePair::response().
Referenced by main().
void concatenate_restart | ( | StringArray | pos_args | ) |
concatenate multiple restart files
Usage: "dakota_restart_util cat dakota_1.rst ... dakota_n.rst dakota_new.rst"
Combines multiple restart files into a single restart database.
References abort_handler().
Referenced by main().
Real std_normal_coverage_inverse | ( | const Real | coverage | ) |
Given a required coverage c \in [0,1], this routine computes the value b such that.
F(b) = \int_{-b}^{b} (1/sqrt(2\pi)) * exp{-x*x/2) dx = c There are two ways to compute b: 1) b is the value such that \int_{-\infty}^{b} (1/sqrt(2\pi)) * exp{-x*x/2) dx = (1+c)/2. This is the approach used when calling the python scipy stats.norm.ppf((1+c)/2) routine. 2) c = F(b) = 2 * \int_{0}^{b} (1/sqrt(2\pi)) * exp{-x*x/2) dx = erf(b/sqrt(2)), that is, b = sqrt(2) * erf_inv(c). This is the approach used in this DAKOTA routine. If c \in [0,1], this routine returns b, otherwise it aborts/throws an exception.
[in] | coverage | = the required coverage level c above |
return = the value b explained above
References abort_handler().
Referenced by computeDSTIEN().
Real computeDSTIEN_conversion_factor | ( | const size_t | number_of_samples, |
const Real | alpha | ||
) |
This routine computes the multiplicative conversion factor to be applied to the sample standard deviation in order to get the standard deviation corresponding to the 'two sided tolerance interval equivalent normal' (DSTIEN).
More especifically, this routine expects the following input information:
The input information must satisty the following conditions, otherwise the routine aborts/throws an exception:
If all input information is valid, then this routine returns the following value 'mcf' for the multiplicative conversion factor:
See: Charles F. Jekel and Vicente Romero, "Conservative and Efficient Tail Probability Estimation from Sparse Sample Data", Sandia Report SAND2020-7572J, equations (4) and (5).
[in] | number_of_samples | = the value 'm' on the text above |
[in] | alpha | = the value such that (1-alpha) is the required confidence level |
return = value of the multiplicative conversion factor
References abort_handler().
Referenced by computeDSTIEN().
void computeDSTIEN | ( | const IntResponseMap & | resp_samples, |
const Real | coverage, | ||
const Real | alpha, | ||
size_t & | num_valid_samples, | ||
RealVector & | dstien_mus, | ||
Real & | delta_mf, | ||
RealVector & | sample_sigmas, | ||
RealVector & | dstien_sigmas | ||
) |
This routine computes the r averages and r standard deviations corresponding to the 'two sided tolerance interval equivalent normal' (DSTIEN).
More especifically, this routine expects the following input information:
The input information must satisty the following conditions, otherwise the routine aborts/throws an exception:
The output vectors dstien_mus and dstien_sigmas will have size r on output (that is, they are internally resized if they are not supplied with size r)
If all input information is valid, then this routine selects the m <= n response samples that are valid (meaning, all r responses are finite values):
[in] | resp_samples | = the set of n response samples, each sample with r components |
[in] | coverage | = the required coverage level c above |
[in] | alpha | = the value such that (1-alpha) is the required confidence level |
[out] | num_valid_samples | = number of valid samples ('m' on the text above) used to compute 'ties_mus' and 'dstien_sigmas' |
[out] | dstien_mus | = the r averages |
[out] | delta_mf | = the multiplicative factor explained above |
[out] | sample_sigmas | = the r sample standard deviations |
[out] | dstien_sigmas | = the r DSTIEN standard deviations |
References abort_handler(), computeDSTIEN_conversion_factor(), and std_normal_coverage_inverse().
Referenced by NonDSampling::compute_statistics().
std::vector<std::string> Dakota::get_pathext | ( | ) |
Utility function for executable file search algorithms
Referenced by WorkdirHelper::which().
|
inline |
Utility function for "which" sets complete_filepath from dir_path/file_name combo
short abort_mode = ABORT_EXITS |
by default Dakota exits or calls MPI_Abort on errors
whether dakota exits/aborts or throws on errors
Referenced by abort_throw_or_exit(), Environment::exit_mode(), and PythonInterface::python_run().
|
static |
bimap between sub-method enums and strings; only used in this compilation unit (using bimap for consistency, though at time of addition, only uni-directional mapping is supported)
Referenced by Iterator::submethod_enum_to_string().
Dakota_funcs DakFuncs0 |
const char* FIELD_NAMES[] |
fields to pass to Matlab in Dakota structure
Referenced by MatlabInterface::matlab_engine_run(), and MatlabInterface::MatlabInterface().
const int NUMBER_OF_FIELDS = 23 |
number of fields in above structure
Referenced by MatlabInterface::matlab_engine_run(), and MatlabInterface::MatlabInterface().
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
Variables label array designations for design and state. All non-uncertain variables need to be in this array. Used in check_variables_node to check lengths and make_variable_defaults to build labels.
Referenced by NIDRProblemDescDB::check_variables_node(), and NIDRProblemDescDB::make_variable_defaults().
|
static |
Variables labels/bounds/values check array for real-valued uncertain variables; one array entry per contiguous container. These associate the individual variables given by, e.g., CAUVLbl, with the contiguous container in which they are stored.
Referenced by NIDRProblemDescDB::check_variables_node(), and NIDRProblemDescDB::make_variable_defaults().
|
static |
Variables labels/bounds/values check array for integer-valued uncertain variables; one array entry per contiguous container. These associate the individual variables given by, e.g., DAUIVLbl, with the contiguous container in which they are stored.
Referenced by NIDRProblemDescDB::check_variables_node(), and NIDRProblemDescDB::make_variable_defaults().
|
static |
Variables labels/bounds/values check array for string-valued uncertain variables; one array entry per contiguous container. These associate the individual variables given by, e.g., DAUSVLbl, with the contiguous container in which they are stored.
Referenced by NIDRProblemDescDB::check_variables_node(), and NIDRProblemDescDB::make_variable_defaults().
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
This is used within check_variables_node(): Var_RealBoundIPCheck() is applied to validate bounds and initial points.
Referenced by NIDRProblemDescDB::check_variables_node().
|
static |
This is used in check_variables_node(): Var_IntBoundIPCheck() is applied to validate bounds and initial points, and in make_variable_defaults(): Vgen_* is called to infer bounds.
Referenced by NIDRProblemDescDB::check_variables_node(), and NIDRProblemDescDB::make_variable_defaults().
const char* SCI_FIELD_NAMES[] |
fields to pass to Scilab in Dakota structure
Referenced by ScilabInterface::scilab_engine_run().
const int SCI_NUMBER_OF_FIELDS = 26 |
number of fields in above structure
Referenced by ScilabInterface::scilab_engine_run().