Dakota
Version
Explore and Predict with Confidence
|
Base class for Bayesian inference: generates posterior distribution on model parameters given experimental data. More...
Public Member Functions | |
NonDBayesCalibration (ProblemDescDB &problem_db, Model &model) | |
standard constructor More... | |
~NonDBayesCalibration () | |
destructor | |
template<typename VectorType > | |
Real | prior_density (const VectorType &vec) |
compute the prior PDF for a particular MCMC sample | |
template<typename VectorType > | |
Real | log_prior_density (const VectorType &vec) |
compute the log prior PDF for a particular MCMC sample | |
template<typename Engine > | |
void | prior_sample (Engine &rng, RealVector &prior_samples) |
draw a multivariate sample from the prior distribution | |
template<typename VectorType > | |
void | prior_mean (VectorType &mean_vec) const |
return the mean of the prior distribution More... | |
template<typename MatrixType > | |
void | prior_variance (MatrixType &var_mat) const |
return the covariance of the prior distribution More... | |
template<> | |
Real | prior_density (const RealVector &vec) |
template<> | |
Real | log_prior_density (const RealVector &vec) |
Public Member Functions inherited from NonDCalibration | |
NonDCalibration (ProblemDescDB &problem_db, Model &model) | |
standard constructor More... | |
~NonDCalibration () | |
destructor | |
bool | resize () |
reinitializes iterator based on new variable size | |
Public Member Functions inherited from NonD | |
void | requested_levels (const RealVectorArray &req_resp_levels, const RealVectorArray &req_prob_levels, const RealVectorArray &req_rel_levels, const RealVectorArray &req_gen_rel_levels, short resp_lev_tgt, short resp_lev_tgt_reduce, bool cdf_flag, bool pdf_output) |
set requestedRespLevels, requestedProbLevels, requestedRelLevels, requestedGenRelLevels, respLevelTarget, cdfFlag, and pdfOutput (used in combination with alternate ctors) | |
void | print_level_mappings (std::ostream &s) const |
prints the z/p/beta/beta* mappings reflected in {requested,computed}{Resp,Prob,Rel,GenRel}Levels for default qoi_type and qoi_labels | |
void | print_level_mappings (std::ostream &s, String qoi_type, const StringArray &qoi_labels) const |
prints the z/p/beta/beta* mappings reflected in {requested,computed}{Resp,Prob,Rel,GenRel}Levels More... | |
void | print_level_mappings (std::ostream &s, const RealVector &level_maps, bool moment_offset, const String &prepend="") |
print level mapping statistics using optional pre-pend More... | |
bool | pdf_output () const |
get pdfOutput | |
void | pdf_output (bool output) |
set pdfOutput | |
short | final_moments_type () const |
get finalMomentsType | |
void | final_moments_type (short type) |
set finalMomentsType | |
Public Member Functions inherited from Analyzer | |
const VariablesArray & | all_variables () |
return the complete set of evaluated variables | |
const RealMatrix & | all_samples () |
return the complete set of evaluated samples | |
const IntResponseMap & | all_responses () const |
return the complete set of computed responses | |
size_t | num_samples () const |
virtual void | vary_pattern (bool pattern_flag) |
sets varyPattern in derived classes that support it | |
Public Member Functions inherited from Iterator | |
Iterator (std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
default constructor More... | |
Iterator (ProblemDescDB &problem_db, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
standard envelope constructor, which constructs its own model(s) More... | |
Iterator (ProblemDescDB &problem_db, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor which uses the ProblemDescDB but accepts a model from a higher level (meta-iterator) context, instead of constructing its own More... | |
Iterator (const String &method_string, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor for instantiations by name without the ProblemDescDB More... | |
Iterator (const Iterator &iterator) | |
copy constructor More... | |
virtual | ~Iterator () |
destructor | |
Iterator | operator= (const Iterator &iterator) |
assignment operator | |
virtual void | post_input () |
read tabular data for post-run mode | |
virtual void | reset () |
restore initial state for repeated sub-iterator executions | |
virtual void | nested_variable_mappings (const SizetArray &c_index1, const SizetArray &di_index1, const SizetArray &ds_index1, const SizetArray &dr_index1, const ShortArray &c_target2, const ShortArray &di_target2, const ShortArray &ds_target2, const ShortArray &dr_target2) |
set primaryA{CV,DIV,DRV}MapIndices, secondaryA{CV,DIV,DRV}MapTargets within derived Iterators; supports computation of higher-level sensitivities in nested contexts (e.g., derivatives of statistics w.r.t. inserted design variables) | |
virtual void | nested_response_mappings (const RealMatrix &primary_coeffs, const RealMatrix &secondary_coeffs) |
set primaryResponseCoefficients, secondaryResponseCoefficients within derived Iterators; Necessary for scalarization case in MLMC NonDMultilevelSampling to map scalarization in nested context | |
virtual void | initialize_iterator (int job_index) |
used by IteratorScheduler to set the starting data for a run | |
virtual void | pack_parameters_buffer (MPIPackBuffer &send_buffer, int job_index) |
used by IteratorScheduler to pack starting data for an iterator run | |
virtual void | unpack_parameters_buffer (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack starting data for an iterator run | |
virtual void | unpack_parameters_initialize (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack starting data and initialize an iterator run | |
virtual void | pack_results_buffer (MPIPackBuffer &send_buffer, int job_index) |
used by IteratorScheduler to pack results data from an iterator run | |
virtual void | unpack_results_buffer (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack results data from an iterator run | |
virtual void | update_local_results (int job_index) |
used by IteratorScheduler to update local results arrays | |
virtual const RealSymMatrix & | response_error_estimates () const |
return error estimates associated with the final iterator solution | |
virtual bool | accepts_multiple_points () const |
indicates if this iterator accepts multiple initial points. Default return is false. Override to return true if appropriate. | |
virtual void | initial_point (const Variables &pt) |
sets the initial point for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initial_point (const RealVector &pt) |
sets the initial point (active continuous variables) for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initial_points (const VariablesArray &pts) |
sets the multiple initial points for this iterator. This should only be used if accepts_multiple_points() returns true. | |
virtual void | variable_bounds (const RealVector &cv_lower_bnds, const RealVector &cv_upper_bnds) |
assign nonlinear inequality and equality constraint allowables for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | linear_constraints (const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lb, const RealVector &lin_ineq_ub, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_tgt) |
assign linear inequality and linear equality constraints for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | nonlinear_constraints (const RealVector &nln_ineq_lb, const RealVector &nln_ineq_ub, const RealVector &nln_eq_tgt) |
assign nonlinear inequality and equality constraint allowables for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initialize_graphics (int iterator_server_id=1) |
initialize the 2D graphics window and the tabular graphics data More... | |
virtual void | check_sub_iterator_conflict () |
detect any conflicts due to recursive use of the same Fortran solver More... | |
virtual unsigned short | uses_method () const |
return name of any enabling iterator used by this iterator | |
virtual void | method_recourse () |
perform a method switch, if possible, due to a detected conflict | |
virtual void | sampling_reset (size_t min_samples, bool all_data_flag, bool stats_flag) |
reset sampling iterator to use at least min_samples | |
virtual void | sampling_reference (size_t samples_ref) |
set reference number of samples, which is a lower bound during reset | |
virtual void | sampling_increment () |
increment to next in sequence of refinement samples | |
virtual void | random_seed (int seed) |
set randomSeed, if present | |
virtual unsigned short | sampling_scheme () const |
return sampling name | |
virtual IntIntPair | estimate_partition_bounds () |
estimate the minimum and maximum partition sizes that can be utilized by this Iterator | |
virtual void | declare_sources () |
Declare sources to the evaluations database. | |
void | init_communicators (ParLevLIter pl_iter) |
initialize the communicators associated with this Iterator instance | |
void | set_communicators (ParLevLIter pl_iter) |
set the communicators associated with this Iterator instance | |
void | free_communicators (ParLevLIter pl_iter) |
free the communicators associated with this Iterator instance | |
void | resize_communicators (ParLevLIter pl_iter, bool reinit_comms) |
Resize the communicators. This is called from the letter's resize() | |
void | parallel_configuration_iterator (ParConfigLIter pc_iter) |
set methodPCIter | |
ParConfigLIter | parallel_configuration_iterator () const |
return methodPCIter | |
void | parallel_configuration_iterator_map (std::map< size_t, ParConfigLIter > pci_map) |
set methodPCIterMap | |
std::map< size_t, ParConfigLIter > | parallel_configuration_iterator_map () const |
return methodPCIterMap | |
void | run (ParLevLIter pl_iter) |
invoke set_communicators(pl_iter) prior to run() | |
void | run () |
orchestrate initialize/pre/core/post/finalize phases More... | |
void | assign_rep (std::shared_ptr< Iterator > iterator_rep) |
replaces existing letter with a new one More... | |
void | iterated_model (const Model &model) |
set the iteratedModel (iterators and meta-iterators using a single model instance) | |
Model & | iterated_model () |
return the iteratedModel (iterators & meta-iterators using a single model instance) | |
ProblemDescDB & | problem_description_db () const |
return the problem description database (probDescDB) | |
ParallelLibrary & | parallel_library () const |
return the parallel library (parallelLib) | |
void | method_name (unsigned short m_name) |
set the method name to an enumeration value | |
unsigned short | method_name () const |
return the method name via its native enumeration value | |
void | method_string (const String &m_str) |
set the method name by string | |
String | method_string () const |
return the method name by string | |
String | method_enum_to_string (unsigned short method_enum) const |
convert a method name enumeration value to a string | |
unsigned short | method_string_to_enum (const String &method_str) const |
convert a method name string to an enumeration value | |
String | submethod_enum_to_string (unsigned short submethod_enum) const |
convert a sub-method name enumeration value to a string | |
const String & | method_id () const |
return the method identifier (methodId) | |
int | maximum_evaluation_concurrency () const |
return the maximum evaluation concurrency supported by the iterator | |
void | maximum_evaluation_concurrency (int max_conc) |
set the maximum evaluation concurrency supported by the iterator | |
size_t | maximum_iterations () const |
return the maximum iterations for this iterator | |
void | maximum_iterations (size_t max_iter) |
set the maximum iterations for this iterator | |
void | convergence_tolerance (Real conv_tol) |
set the method convergence tolerance (convergenceTol) | |
Real | convergence_tolerance () const |
return the method convergence tolerance (convergenceTol) | |
void | output_level (short out_lev) |
set the method output level (outputLevel) | |
short | output_level () const |
return the method output level (outputLevel) | |
void | summary_output (bool summary_output_flag) |
Set summary output control; true enables evaluation/results summary. | |
size_t | num_final_solutions () const |
return the number of solutions to retain in best variables/response arrays | |
void | num_final_solutions (size_t num_final) |
set the number of solutions to retain in best variables/response arrays | |
void | active_set (const ActiveSet &set) |
set the default active set (for use with iterators that employ evaluate_parameter_sets()) | |
const ActiveSet & | active_set () const |
return the default active set (used by iterators that employ evaluate_parameter_sets()) | |
void | active_set_request_vector (const ShortArray &asv) |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
const ShortArray & | active_set_request_vector () const |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
void | active_set_request_values (short asv_val) |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
void | sub_iterator_flag (bool si_flag) |
set subIteratorFlag (and update summaryOutputFlag if needed) | |
bool | is_null () const |
function to check iteratorRep (does this envelope contain a letter?) | |
std::shared_ptr< Iterator > | iterator_rep () const |
returns iteratorRep for access to derived class member functions that are not mapped to the top Iterator level | |
virtual void | eval_tag_prefix (const String &eval_id_str) |
set the hierarchical eval ID tag prefix More... | |
std::shared_ptr< TraitsBase > | traits () const |
returns methodTraits for access to derived class member functions that are not mapped to the top TraitsBase level | |
bool | top_level () |
Return whether the iterator is the top level iterator. | |
void | top_level (bool tflag) |
Set the iterator's top level flag. | |
Static Public Member Functions | |
static void | get_positive_definite_covariance_from_hessian (const RealSymMatrix &hessian, const RealMatrix &prior_chol_fact, RealSymMatrix &covariance, short output_lev) |
Compute the proposal covariance C based on low-rank approximation to the prior-preconditioned misfit Hessian. | |
static Real | knn_kl_div (RealMatrix &distX_samples, RealMatrix &distY_samples, size_t dim) |
static Real | knn_mutual_info (RealMatrix &Xmatrix, int dimX, int dimY, unsigned short alg) |
Protected Member Functions | |
void | pre_run () |
pre-run portion of run (optional); re-implemented by Iterators which can generate all Variables (parameter sets) a priori More... | |
void | core_run () |
core portion of run; implemented by all derived classes and may include pre/post steps in lieu of separate pre/post More... | |
void | derived_init_communicators (ParLevLIter pl_iter) |
derived class contributions to initializing the communicators associated with this Iterator instance | |
void | derived_set_communicators (ParLevLIter pl_iter) |
derived class contributions to setting the communicators associated with this Iterator instance | |
void | derived_free_communicators (ParLevLIter pl_iter) |
derived class contributions to freeing the communicators associated with this Iterator instance | |
virtual void | print_results (std::ostream &s, short results_state=FINAL_RESULTS) |
print the final iterator results More... | |
void | print_variables (std::ostream &s, const RealVector &c_vars) |
convenience function to print calibration parameters, e.g., for MAP / best parameters | |
const Model & | algorithm_space_model () const |
virtual void | specify_prior () |
Methods for instantiating a Bayesian inverse problem. No-ops in the base class that can be specialized by child classes. | |
virtual void | specify_likelihood () |
virtual void | init_bayesian_solver () |
virtual void | specify_posterior () |
virtual void | calibrate ()=0 |
Perform Bayesian calibration (all derived classes must implement) | |
void | construct_mcmc_model () |
construct mcmcModel (no emulation, GP, PCE, or SC) that wraps inbound Model | |
void | init_hyper_parameters () |
initialize the hyper-parameter priors | |
void | init_map_optimizer () |
initialize the MAP optimizer selection More... | |
void | construct_map_model () |
construct the negative log posterior RecastModel (negLogPostModel) | |
void | construct_map_optimizer () |
construct the MAP optimizer for minimization of negLogPostModel | |
virtual void | map_pre_solve () |
void | initialize_model () |
initialize emulator model and probability space transformations | |
void | calibrate_with_adaptive_emulator () |
Run calibration, looping to refine emulator around posterior mode. More... | |
virtual void | filter_chain_by_conditioning () |
Filter mcmc chain for PCE adaptive emulator. extract batchSize points from the MCMC chain and store final aggregated set within allSamples; unique points with best conditioning are selected, as determined by pivoted LU. | |
void | best_to_all () |
copy bestSamples to allSamples to use in surrogate update | |
void | update_model () |
evaluates allSamples on iteratedModel and update the mcmcModel emulator with all{Samples,Responses} | |
Real | assess_emulator_convergence () |
compute the L2 norm of the change in emulator coefficients | |
void | calibrate_to_hifi () |
calibrate the model to a high-fidelity data source, using mutual information-guided design of experiments (adaptive experimental design) | |
void | eval_hi2lo_stop (bool &stop_metric, double &prev_MI, const RealVector &MI_vec, int num_hifi, int max_hifi, int num_candidates) |
evaluate stopping criteria for calibrate_to_hifi | |
void | print_hi2lo_file (std::ostream &out_file, int num_it, const VariablesArray &optimal_config_matrix, const RealVector &MI_vec, RealMatrix &resp_matrix) |
print calibrate_to_hifi progress to file | |
void | print_hi2lo_begin (int num_it) |
print calibrate_to_hifi progress | |
void | print_hi2lo_status (int num_it, int i, const Variables &xi_i, double MI) |
void | print_hi2lo_batch_status (int num_it, int batch_n, int batchEvals, const Variables &optimal_config, double max_MI) |
void | print_hi2lo_selected (int num_it, const VariablesArray &optimal_config_matrix, const RealVector &MI_vec) |
void | print_hi2lo_chain_moments () |
void | add_lhs_hifi_data () |
supplement high-fidelity data with LHS samples | |
void | choose_batch_from_mutual_info (int random_seed, int num_it, int max_hifi, int num_hifi, RealMatrix &mi_chain, VariablesArray &design_matrix, VariablesArray &optimal_config_matrix, RealVector &MI_vec) |
calculate the optimal points to add for a given batch | |
void | apply_hifi_sim_error (int &random_seed, int num_exp, int exp_offset=0) |
apply simulation error vector | |
void | apply_error_vec (const RealVector &error_vec, int &seed, int experiment) |
void | build_error_matrix (const RealVector &sim_error_vec, RealMatrix &sim_error_matrix, int &seed) |
build matrix of errors | |
void | build_designs (VariablesArray &design_matrix) |
build matrix of candidate points More... | |
void | build_hi2lo_xmatrix (RealMatrix &Xmatrix, int i, const RealMatrix &mi_chain, RealMatrix &sim_error_matrix) |
build matrix to calculate mutual information for calibrate_to_hifi | |
void | run_hifi (const VariablesArray &optimal_config_matrix, RealMatrix &resp_matrix) |
run high-fidelity model at several configs and add to experiment data | |
void | build_model_discrepancy () |
calculate model discrepancy with respect to experimental data | |
void | build_scalar_discrepancy () |
void | build_field_discrepancy () |
void | build_GP_field (const RealMatrix &t, RealMatrix &t_pred, const RealVector &concat_disc, RealVector &disc_pred, RealVector &disc_var) |
void | calculate_kde () |
calculate a Kernel Density Estimate (KDE) for the posterior samples | |
void | calculate_evidence () |
calculate the model evidence | |
void | extract_selected_posterior_samples (const std::vector< int > &points_to_keep, const RealMatrix &samples_for_posterior_eval, const RealVector &posterior_density, RealMatrix &posterior_data) const |
void | export_posterior_samples_to_file (const std::string filename, const RealMatrix &posterior_data) const |
template<typename VectorType1 , typename VectorType2 > | |
void | augment_gradient_with_log_prior (VectorType1 &log_grad, const VectorType2 &vec) |
compute the (approximate) gradient of the negative log posterior by augmenting the (approximate) gradient of the negative log likelihood with the gradient of the negative log prior | |
template<typename MatrixType , typename VectorType > | |
void | augment_hessian_with_log_prior (MatrixType &log_hess, const VectorType &vec) |
compute the (approximate) Hessian of the negative log posterior by augmenting the (approximate) Hessian of the negative log likelihood with the Hessian of the negative log prior | |
Real | log_likelihood (const RealVector &residuals, const RealVector &hyper_params) |
calculate log-likelihood from the passed residuals (assuming they are already sized and scaled by covariance / hyperparams... More... | |
void | prior_cholesky_factorization () |
compute priorCovCholFactor based on prior distributions for random variables and any hyperparameters | |
void | get_positive_definite_covariance_from_hessian (const RealSymMatrix &hessian, RealSymMatrix &covariance) |
member version forwards member data to static function | |
void | scale_model () |
Wrap iteratedModel in a RecastModel that performs response scaling. More... | |
void | weight_model () |
Wrap iteratedModel in a RecastModel that weights the residuals. More... | |
void | export_discrepancy (RealMatrix &pred_config_mat) |
print tabular files containing model+discrepancy responses and variances | |
void | export_field_discrepancy (RealMatrix &pred_vars_mat) |
print tabular files containing model+discrepancy responses and variances for field responses | |
virtual void | compute_statistics () |
Compute final stats for MCMC chains. | |
void | export_chain () |
export the acceptance chain in user space | |
void | export_chain (RealMatrix &filtered_chain, RealMatrix &filtered_fn_vals) |
Print filtered posterior and function values (later: credibility and prediction intervals) More... | |
void | filter_chain (const RealMatrix &acceptance_chain, RealMatrix &filtered_chain, int target_length) |
Perform chain filtering based on target chain length. | |
void | filter_chain (const RealMatrix &acceptance_chain, RealMatrix &filtered_chain) |
Perform chain filtering with burn-in and sub-sampling. | |
void | filter_fnvals (const RealMatrix &accepted_fn_vals, RealMatrix &filtered_fn_vals) |
void | filter_matrix_cols (const RealMatrix &orig_matrix, int start_index, int stride, RealMatrix &filtered_matrix) |
return a newly allocated filtered matrix including start_index and every stride-th index after; for burn-in cases, start_index is the number of burn-in discards | |
void | compute_intervals () |
void | compute_prediction_vals (RealMatrix &filtered_fn_vals, RealMatrix &PredVals, int num_filtered, size_t num_exp, size_t num_concatenated) |
void | print_intervals_file (std::ostream &stream, RealMatrix &functionvalsT, RealMatrix &predvalsT, int length, size_t aug_length) |
void | print_intervals_screen (std::ostream &stream, RealMatrix &functionvalsT, RealMatrix &predvalsT, int length) |
void | kl_post_prior (RealMatrix &acceptanceChain) |
Compute information metrics. | |
void | prior_sample_matrix (RealMatrix &prior_dist_samples) |
void | mutual_info_buildX () |
void | print_kl (std::ostream &stream) |
void | print_chain_diagnostics (std::ostream &s) |
void | print_batch_means_intervals (std::ostream &s) |
Protected Member Functions inherited from NonD | |
NonD (ProblemDescDB &problem_db, Model &model) | |
constructor | |
NonD (unsigned short method_name, Model &model) | |
alternate constructor for sample generation and evaluation "on the fly" | |
NonD (unsigned short method_name, Model &model, const ShortShortPair &approx_view) | |
alternate constructor for sample generation and evaluation "on the fly" | |
NonD (unsigned short method_name, const RealVector &lower_bnds, const RealVector &upper_bnds) | |
alternate constructor for sample generation "on the fly" | |
~NonD () | |
destructor | |
void | initialize_run () |
utility function to perform common operations prior to pre_run(); typically memory initialization; setting of instance pointers More... | |
void | finalize_run () |
utility function to perform common operations following post_run(); deallocation and resetting of instance pointers More... | |
const Response & | response_results () const |
return the final statistics from the nondeterministic iteration | |
void | response_results_active_set (const ActiveSet &set) |
set the active set within finalStatistics | |
virtual void | initialize_response_covariance () |
initializes respCovariance | |
virtual void | initialize_final_statistics () |
initializes finalStatistics for storing NonD final results More... | |
virtual void | update_final_statistics () |
update finalStatistics::functionValues | |
virtual bool | discrepancy_sample_counts () const |
flag identifying whether sample counts correspond to level discrepancies | |
void | pull_level_mappings (RealVector &level_maps, size_t offset) |
concatenate computed{Resp,Prob,Rel,GenRel}Levels into level_maps | |
void | push_level_mappings (const RealVector &level_maps, size_t offset) |
update computed{Resp,Prob,Rel,GenRel}Levels from level_maps | |
void | configure_sequence (size_t &num_steps, size_t &secondary_index, short &seq_type) |
configure fidelity/level counts from model hierarchy More... | |
void | configure_cost (unsigned short num_steps, bool multilevel, RealVector &cost) |
extract cost estimates from model hierarchy (forms or resolutions) | |
bool | query_cost (unsigned short num_steps, bool multilevel, RealVector &cost) |
extract cost estimates from model hierarchy, if available | |
bool | query_cost (unsigned short num_steps, Model &model, RealVector &cost) |
extract cost estimates from model hierarchy, if available | |
bool | valid_cost_values (const RealVector &cost) |
test cost for valid values > 0 | |
void | load_pilot_sample (const SizetArray &pilot_spec, size_t num_steps, SizetArray &delta_N_l) |
distribute pilot sample specification across model forms or levels | |
void | load_pilot_sample (const SizetArray &pilot_spec, short seq_type, const Sizet3DArray &N_l, Sizet2DArray &delta_N_l) |
distribute pilot sample specification across model forms and levels | |
template<typename ArrayType > | |
void | inflate_approx_samples (const ArrayType &N_l, bool multilev, size_t secondary_index, std::vector< ArrayType > &N_l_vec) |
update the relevant slice of N_l_3D from the final 2D multilevel or 2D multifidelity sample profile | |
template<typename ArrayType > | |
void | inflate_sequence_samples (const ArrayType &N_l, bool multilev, size_t secondary_index, std::vector< ArrayType > &N_l_vec) |
update the relevant slice of N_l_3D from the final 2D multilevel or 2D multifidelity sample profile | |
void | resize_final_statistics_gradients () |
resizes finalStatistics::functionGradients based on finalStatistics ASV | |
void | update_aleatory_final_statistics () |
update finalStatistics::functionValues from momentStats and computed{Prob,Rel,GenRel,Resp}Levels | |
void | update_system_final_statistics () |
update system metrics from component metrics within finalStatistics | |
void | update_system_final_statistics_gradients () |
update finalStatistics::functionGradients | |
void | initialize_level_mappings () |
size computed{Resp,Prob,Rel,GenRel}Levels | |
void | compute_densities (const RealRealPairArray &min_max_fns, bool prob_refinement=false, bool all_levels_computed=false) |
compute the PDF bins from the CDF/CCDF values and store in computedPDF{Abscissas,Ordinates} More... | |
void | print_densities (std::ostream &s) const |
output the PDFs reflected in computedPDF{Abscissas,Ordinates} using default qoi_type and pdf_labels | |
void | print_densities (std::ostream &s, String qoi_type, const StringArray &pdf_labels) const |
output the PDFs reflected in computedPDF{Abscissas,Ordinates} | |
void | print_system_mappings (std::ostream &s) const |
print system series/parallel mappings for response levels | |
void | print_multilevel_evaluation_summary (std::ostream &s, const SizetArray &N_m) |
print evaluation summary for multilevel sampling across 1D level profile | |
void | print_multilevel_evaluation_summary (std::ostream &s, const Sizet2DArray &N_m) |
print evaluation summary for multilevel sampling across 2D level+QoI profile | |
void | print_multilevel_discrepancy_summary (std::ostream &s, const SizetArray &N_m) |
print evaluation summary for multilevel sampling across 1D level profile for discrepancy across levels | |
void | print_multilevel_discrepancy_summary (std::ostream &s, const SizetArray &N_m, const SizetArray &N_mp1) |
print evaluation summary for multilevel sampling across 1D level profile for discrepancy across model forms | |
void | print_multilevel_discrepancy_summary (std::ostream &s, const Sizet2DArray &N_m) |
print evaluation summary for multilevel sampling across 2D level+QoI profile for discrepancy across levels | |
void | print_multilevel_discrepancy_summary (std::ostream &s, const Sizet2DArray &N_m, const Sizet2DArray &N_mp1) |
print evaluation summary for multilevel sampling across 2D level+QoI profile for discrepancy across model forms | |
template<typename ArrayType > | |
void | print_multilevel_model_summary (std::ostream &s, const std::vector< ArrayType > &N_samp, String type, short seq_type, bool discrep_flag) |
print evaluation summary for multilevel sampling across 2D model+level profile (allocations) or 3D model+level+QoI profile (actual) | |
void | construct_lhs (Iterator &u_space_sampler, Model &u_model, unsigned short sample_type, int num_samples, int seed, const String &rng, bool vary_pattern, short sampling_vars_mode=ACTIVE) |
assign a NonDLHSSampling instance within u_space_sampler | |
unsigned short | sub_optimizer_select (unsigned short requested_sub_method, unsigned short default_sub_method=SUBMETHOD_NPSOL) |
utility for vetting sub-method request against optimizers within the package configuration | |
size_t | one_sided_delta (Real current, Real target) |
compute a one-sided sample increment for multilevel methods to move current sampling level to a new target | |
size_t | one_sided_delta (const SizetArray ¤t, const RealVector &targets, size_t power) |
compute a one-sided sample increment for multilevel methods to move current sampling level to a new target | |
size_t | one_sided_delta (const SizetArray ¤t, Real target, size_t power) |
compute a one-sided sample increment for multilevel methods to move current sampling level to a new target | |
bool | differ (size_t N_alloc_ij, const SizetArray &N_actual_ij) const |
return true if fine-grained reporting differs from coarse-grained | |
bool | differ (const SizetArray &N_alloc_i, const Sizet2DArray &N_actual_i) const |
return true if fine-grained reporting differs from coarse-grained | |
bool | differ (const Sizet2DArray &N_alloc, const Sizet3DArray &N_actual) const |
return true if fine-grained reporting differs from coarse-grained | |
void | archive_allocate_mappings () |
allocate results array storage for distribution mappings | |
void | archive_from_resp (size_t fn_index, size_t inc_id=0) |
archive the mappings from specified response levels for specified fn | |
void | archive_to_resp (size_t fn_index, size_t inc_id=0) |
archive the mappings to computed response levels for specified fn and (optional) increment id. | |
void | archive_allocate_pdf () |
allocate results array storage for pdf histograms | |
void | archive_pdf (size_t fn_index, size_t inc_id=0) |
archive a single pdf histogram for specified function | |
void | archive_equiv_hf_evals (const Real equiv_hf_evals) |
archive the equivalent number of HF evals (used by ML/MF methods) | |
Protected Member Functions inherited from Analyzer | |
Analyzer () | |
default constructor | |
Analyzer (ProblemDescDB &problem_db, Model &model) | |
standard constructor | |
Analyzer (unsigned short method_name, Model &model) | |
alternate constructor for instantiations "on the fly" with a Model | |
Analyzer (unsigned short method_name, Model &model, const ShortShortPair &view_override) | |
alternate constructor for instantiations "on the fly" with a Model | |
Analyzer (unsigned short method_name) | |
alternate constructor for instantiations "on the fly" without a Model | |
~Analyzer () | |
destructor | |
virtual void | get_parameter_sets (Model &model) |
Generate one block of numSamples samples (ndim * num_samples), populating allSamples; ParamStudy is the only class that specializes to use allVariables. | |
virtual void | get_parameter_sets (Model &model, const size_t num_samples, RealMatrix &design_matrix) |
Generate one block of numSamples samples (ndim * num_samples), populating design_matrix. | |
virtual void | update_model_from_sample (Model &model, const Real *sample_vars) |
update model's current variables with data from sample | |
virtual void | update_model_from_variables (Model &model, const Variables &vars) |
update model's current variables with data from vars | |
virtual void | sample_to_variables (const Real *sample_vars, Variables &vars) |
convert column of samples array to variables; derived classes may reimplement for more than active continuous variables More... | |
void | update_from_model (const Model &model) |
set inherited data attributes based on extractions from incoming model | |
void | post_run (std::ostream &s) |
post-run portion of run (optional); verbose to print results; re-implemented by Iterators that can read all Variables/Responses and perform final analysis phase in a standalone way More... | |
void | pre_output () |
const Variables & | variables_results () const |
return a single final iterator solution (variables) | |
const VariablesArray & | variables_array_results () |
return multiple final iterator solutions (variables). This should only be used if returns_multiple_points() returns true. | |
const ResponseArray & | response_array_results () |
return multiple final iterator solutions (response). This should only be used if returns_multiple_points() returns true. | |
bool | compact_mode () const |
returns Analyzer::compactMode | |
bool | returns_multiple_points () const |
indicates if this iterator returns multiple final points. Default return is false. Override to return true if appropriate. | |
void | evaluate_parameter_sets (Model &model, bool log_resp_flag, bool log_best_flag) |
perform function evaluations to map parameter sets (allVariables) into response sets (allResponses) More... | |
void | get_vbd_parameter_sets (Model &model, size_t num_samples) |
generate replicate parameter sets for use in variance-based decomposition More... | |
void | compute_vbd_stats (const size_t num_samples, const IntResponseMap &resp_samples) |
compute VBD-based Sobol indices More... | |
void | archive_sobol_indices () const |
archive VBD-based Sobol indices More... | |
virtual void | archive_model_variables (const Model &, size_t idx) const |
archive model evaluation points | |
virtual void | archive_model_response (const Response &, size_t idx) const |
archive model evaluation responses | |
void | read_variables_responses (int num_evals, size_t num_vars) |
convenience function for reading variables/responses (used in derived classes post_input) More... | |
void | print_sobol_indices (std::ostream &s) const |
Printing of VBD results. More... | |
void | samples_to_variables_array (const RealMatrix &sample_matrix, VariablesArray &vars_array) |
convert samples array to variables array; e.g., allSamples to allVariables | |
virtual void | variables_to_sample (const Variables &vars, Real *sample_c_vars) |
convert the active continuous variables into a column of allSamples More... | |
void | variables_array_to_samples (const VariablesArray &vars_array, RealMatrix &sample_matrix) |
convert variables array to samples array; e.g., allVariables to allSamples | |
Protected Member Functions inherited from Iterator | |
Iterator (BaseConstructor, ProblemDescDB &problem_db, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion in the derived class constructors - Coplien, p. 139) More... | |
Iterator (NoDBBaseConstructor, unsigned short method_name, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for base iterator classes constructed on the fly More... | |
Iterator (NoDBBaseConstructor, unsigned short method_name, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for base iterator classes constructed on the fly More... | |
Iterator (NoDBBaseConstructor, Model &model, size_t max_iter, size_t max_eval, Real conv_tol, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor for instantiations without ProblemDescDB More... | |
virtual const VariablesArray & | initial_points () const |
gets the multiple initial points for this iterator. This will only be meaningful after a call to initial_points mutator. | |
StrStrSizet | run_identifier () const |
get the unique run identifier based on method name, id, and number of executions | |
void | initialize_model_graphics (Model &model, int iterator_server_id) |
helper function that encapsulates initialization operations, modular on incoming Model instance More... | |
void | export_final_surrogates (Model &data_fit_surr_model) |
export final surrogates generated, e.g., GP in EGO and friends More... | |
Static Protected Member Functions | |
static void | neg_log_post_resp_mapping (const Variables &model_vars, const Variables &nlpost_vars, const Response &model_resp, Response &nlpost_resp) |
static function passed by pointer to negLogPostModel recast model More... | |
static void | ann_dist (const ANNpointArray matrix1, const ANNpointArray matrix2, RealVector &distances, int NX, int NY, int dim2, IntVector &k, double eps) |
static void | ann_dist (const ANNpointArray matrix1, const ANNpointArray matrix2, RealVector &distances, Int2DArray &indices, int NX, int NY, int dim2, IntVector &k, double eps) |
Static Protected Member Functions inherited from Iterator | |
static void | gnewton_set_recast (const Variables &recast_vars, const ActiveSet &recast_set, ActiveSet &sub_model_set) |
conversion of request vector values for the Gauss-Newton Hessian approximation More... | |
Protected Attributes | |
String | scalarDataFilename |
short | emulatorType |
the emulator type: NO_EMULATOR, GP_EMULATOR, PCE_EMULATOR, SC_EMULATOR, ML_PCE_EMULATOR, MF_PCE_EMULATOR, or MF_SC_EMULATOR | |
RealVectorArray | prevCoeffs |
cache previous expansion coefficients for assessing convergence of emulator refinement process | |
Model | mcmcModel |
Model instance employed in the likelihood function; provides response function values from Gaussian processes, stochastic expansions (PCE/SC), or direct access to simulations (no surrogate option) | |
bool | mcmcModelHasSurrogate |
whether the MCMC Model is a surrogate, or a thin transformation around a surrogate, so can be cheaply re-evaluated in chain recovery | |
Model | residualModel |
DataTransformModel wrapping the mcmcModel. | |
Iterator | mapOptimizer |
SQP or NIP optimizer for pre-solving for the MAP point prior to MCMC. This is restricted to emulator cases for now, but as for derivative preconditioning, could be activated for no-emulator cases with a specification option (not active by default). | |
Model | negLogPostModel |
RecastModel for solving for MAP: reduces residualModel to scalar negative log posterior. | |
unsigned short | mapOptAlgOverride |
user setting of the MAP optimization algorithm type | |
Iterator | stochExpIterator |
NonDPolynomialChaos or NonDStochCollocation instance for defining a PCE/SC-based mcmcModel. | |
int | chainSamples |
number of samples in the chain (e.g. number of MCMC samples); for iterative update cycles, number of samples per update cycle | |
int | randomSeed |
random seed for MCMC process | |
unsigned int | batchSize |
number of points to add to surrogate at each iteration of calibrate_with_adaptive_emulator | |
short | mcmcDerivOrder |
order of derivatives used in MCMC process (bitwise like ASV) | |
RealVector | mapSoln |
solution for most recent MAP pre-solve; also serves as initial guess for initializing the first solve and warm-starting the next solve (posterior emulator refinement) | |
bool | adaptExpDesign |
whether to perform iterative design of experiments with high-fidelity model | |
size_t | numCandidates |
number of candidate designs for adaptive Bayesian experimental design | |
String | importCandPtsFile |
whether to import candidate design points for adaptive Bayesian experimental design | |
unsigned short | importCandFormat |
tabular format for the candidate design points import file | |
int | maxHifiEvals |
maximum number of high-fidelity model runs to be used for adaptive Bayesian experimental design | |
int | batchEvals |
number of optimal designs selected per iteration of experimental design algorithm | |
unsigned short | mutualInfoAlg |
algorithm to employ in calculating mutual information | |
bool | readFieldCoords |
need field coordinates for model discrepancy | |
bool | calModelDiscrepancy |
flag whether to calculate model discrepancy | |
String | discrepancyType |
set discrepancy type | |
String | exportCorrModelFile |
filename for corrected model (model+discrepancy) calculations output | |
String | exportDiscrepFile |
filename for discrepancy calculations output | |
String | exportCorrVarFile |
filename for corrected model variance calculations | |
unsigned short | exportCorrModelFormat |
format options for corrected model output | |
unsigned short | exportDiscrepFormat |
format options for discrepancy output | |
unsigned short | exportCorrVarFormat |
format options for corrected model variance output | |
short | discrepPolyOrder |
specify polynomial or trend order for discrepancy correction | |
size_t | numPredConfigs |
number of prediction configurations at which to calculate model discrepancy | |
RealVector | configLowerBnds |
lower bounds on configuration domain | |
RealVector | configUpperBnds |
upper bounds on configuration domain | |
ResponseArray | discrepancyResponses |
array containing predicted of model+discrepancy | |
ResponseArray | correctedResponses |
array containing predicted of model+discrepancy | |
RealMatrix | correctedVariances |
matrix containing variances of model+discrepancy | |
RealVector | predictionConfigList |
list of prediction configurations at which to calculate model discrepancy | |
String | importPredConfigs |
whether to import prediction configurations at which to calculate model discrepancy | |
unsigned short | importPredConfigFormat |
tabular format for prediction configurations import file | |
RealVector | discrepancyFieldResponses |
array containing predicted of model+discrepancy | |
RealVector | correctedFieldResponses |
array containing predicted of model+discrepancy | |
RealVector | correctedFieldVariances |
matrix containing variances of model+discrepancy | |
Model | hifiModel |
a high-fidelity model data source (given by pointer in input) | |
int | initHifiSamples |
initial high-fidelity model samples | |
Iterator | hifiSampler |
LHS iterator to generate hi-fi model data. | |
RealMatrix | priorCovCholFactor |
the Cholesky factor of the prior covariance | |
unsigned short | obsErrorMultiplierMode |
mode for number of observation error multipliers to calibrate (default none) | |
int | numHyperparams |
calculated number of hyperparameters augmenting the calibration parameter set, e.g., due to calibrate observation error multipliers | |
RealVector | invGammaAlphas |
alphas for inverse gamma distribution on hyper-params | |
RealVector | invGammaBetas |
alphas for inverse gamma distribution on hyper-params | |
std::vector< Pecos::RandomVariable > | invGammaDists |
distributions for hyper-params | |
bool | standardizedSpace |
flag indicating use of a variable transformation to standardized probability space for the model or emulator | |
bool | posteriorStatsKL |
flag indicating the calculation of KL divergence between prior and posterior | |
bool | posteriorStatsMutual |
flag indicating the calculation of mutual information between prior and posterior | |
bool | posteriorStatsKDE |
flag indicating the calculation of the kernel density estimate of the posteriors | |
bool | chainDiagnostics |
flag indicating calculation of chain diagnostics | |
bool | chainDiagnosticsCI |
flag indicating calculation of confidence intervals as a chain diagnositc | |
bool | calModelEvidence |
flag indicating calculation of the evidence of the model | |
bool | calModelEvidMC |
flag indicating use of Monte Carlo approximation to calculate evidence | |
bool | calModelEvidLaplace |
flag indicating use of Laplace approximation to calculate evidence | |
int | evidenceSamples |
number of samples to be used in model evidence calculation | |
bool | adaptPosteriorRefine |
flag indicating usage of adaptive posterior refinement; currently makes sense for unstructured grids in GP and PCE least squares/CS | |
String | proposalCovarType |
approach for defining proposal covariance | |
RealVector | proposalCovarData |
data from user input of proposal covariance | |
String | proposalCovarFilename |
filename for user-specified proposal covariance | |
String | proposalCovarInputType |
approach for defining proposal covariance | |
RealMatrix | acceptanceChain |
Post-processing-related controls. More... | |
RealMatrix | acceptedFnVals |
cached function values corresponding to acceptanceChain for final statistics reporting | |
std::map< Real, RealVector > | bestSamples |
container for managing best MCMC samples (points and associated log posterior) collected across multiple (restarted) chains | |
int | burnInSamples |
number of MCMC samples to discard from acceptance chain | |
int | subSamplingPeriod |
period or skip in post-processing the acceptance chain | |
RealMatrix | chainStats |
RealMatrix | fnStats |
RealMatrix | predVals |
Compute credibility and prediction intervals of final chain. | |
RealMatrix | filteredFnVals |
cached filtered function values for printing (may be a view of acceptedFnVals) | |
String | exportMCMCFilename |
output filename for the MCMC chain | |
short | exportMCMCFormat |
output formatting options for MCMC export | |
short | filteredMCMCFormat |
Real | kl_est |
bool | scaleFlag |
whether response scaling is active | |
bool | weightFlag |
whether weight scaling is active | |
Protected Attributes inherited from NonDCalibration | |
bool | calibrationData |
flag indicating whether there is calibration data present | |
ExperimentData | expData |
Container for experimental data to which to calibrate model. | |
Protected Attributes inherited from NonD | |
NonD * | prevNondInstance |
pointer containing previous value of nondInstance | |
size_t | startCAUV |
starting index of continuous aleatory uncertain variables within active continuous variables (convenience for managing offsets) | |
size_t | numCAUV |
number of active continuous aleatory uncertain variables | |
bool | epistemicStats |
flag for computing interval-type metrics instead of integrated metrics If any epistemic vars are active in a metric evaluation, then flag is set. | |
RealMatrix | momentStats |
standardized or central resp moments, as determined by finalMomentsType. Calculated in compute_moments()) and indexed as (moment,fn). | |
RealVectorArray | requestedRespLevels |
requested response levels for all response functions | |
RealVectorArray | computedProbLevels |
output probability levels for all response functions resulting from requestedRespLevels | |
RealVectorArray | computedRelLevels |
output reliability levels for all response functions resulting from requestedRespLevels | |
RealVectorArray | computedGenRelLevels |
output generalized reliability levels for all response functions resulting from requestedRespLevels | |
short | respLevelTarget |
indicates mapping of z->p (PROBABILITIES), z->beta (RELIABILITIES), or z->beta* (GEN_RELIABILITIES) | |
short | respLevelTargetReduce |
indicates component or system series/parallel failure metrics | |
RealVectorArray | requestedProbLevels |
requested probability levels for all response functions | |
RealVectorArray | requestedRelLevels |
requested reliability levels for all response functions | |
RealVectorArray | requestedGenRelLevels |
requested generalized reliability levels for all response functions | |
RealVectorArray | computedRespLevels |
output response levels for all response functions resulting from requestedProbLevels, requestedRelLevels, or requestedGenRelLevels | |
size_t | totalLevelRequests |
total number of levels specified within requestedRespLevels, requestedProbLevels, and requestedRelLevels | |
bool | cdfFlag |
flag for type of probabilities/reliabilities used in mappings: cumulative/CDF (true) or complementary/CCDF (false) | |
bool | pdfOutput |
flag for managing output of response probability density functions (PDFs) | |
RealVectorArray | computedPDFAbscissas |
sorted response PDF intervals bounds extracted from min/max sample and requested/computedRespLevels (vector lengths = num bins + 1) | |
RealVectorArray | computedPDFOrdinates |
response PDF densities computed from bin counts divided by (unequal) bin widths (vector lengths = num bins) | |
Response | finalStatistics |
final statistics from the uncertainty propagation used in strategies: response means, standard deviations, and probabilities of failure | |
short | finalMomentsType |
type of moments logged within finalStatistics: none, central, standard | |
size_t | miPLIndex |
index for the active ParallelLevel within ParallelConfiguration::miPLIters | |
BitArray | pdfComputed |
Whether PDF was computed for function i; used to determine whether a pdf should be archived. | |
Protected Attributes inherited from Analyzer | |
size_t | numFunctions |
number of response functions | |
size_t | numContinuousVars |
number of active continuous vars | |
size_t | numDiscreteIntVars |
number of active discrete integer vars | |
size_t | numDiscreteStringVars |
number of active discrete string vars | |
size_t | numDiscreteRealVars |
number of active discrete real vars | |
bool | compactMode |
switch for allSamples (compact mode) instead of allVariables (normal mode) | |
VariablesArray | allVariables |
array of all variables to be evaluated in evaluate_parameter_sets() | |
RealMatrix | allSamples |
compact alternative to allVariables | |
IntResponseMap | allResponses |
array of all responses to be computed in evaluate_parameter_sets() | |
StringArray | allHeaders |
array of headers to insert into output while evaluating allVariables | |
size_t | numObjFns |
number of objective functions | |
size_t | numLSqTerms |
number of least squares terms | |
RealPairPRPMultiMap | bestVarsRespMap |
map which stores best set of solutions | |
Protected Attributes inherited from Iterator | |
ProblemDescDB & | probDescDB |
class member reference to the problem description database More... | |
ParallelLibrary & | parallelLib |
class member reference to the parallel library | |
ParConfigLIter | methodPCIter |
the active ParallelConfiguration used by this Iterator instance | |
Model | iteratedModel |
the model to be iterated (for iterators and meta-iterators employing a single model instance) | |
size_t | myModelLayers |
number of Models locally (in Iterator or derived classes) wrapped around the initially passed in Model | |
unsigned short | methodName |
name of the iterator (the user's method spec) | |
Real | convergenceTol |
iteration convergence tolerance | |
size_t | maxIterations |
maximum number of iterations for the method | |
size_t | maxFunctionEvals |
maximum number of fn evaluations for the method | |
int | maxEvalConcurrency |
maximum number of concurrent model evaluations More... | |
ActiveSet | activeSet |
the response data requirements on each function evaluation | |
size_t | numFinalSolutions |
number of solutions to retain in best variables/response arrays | |
VariablesArray | bestVariablesArray |
collection of N best solution variables found during the study; always in context of Model originally passed to the Iterator (any in-flight Recasts must be undone) | |
ResponseArray | bestResponseArray |
collection of N best solution responses found during the study; always in context of Model originally passed to the Iterator (any in-flight Recasts must be undone) | |
bool | subIteratorFlag |
flag indicating if this Iterator is a sub-iterator (NestedModel::subIterator or DataFitSurrModel::daceIterator) | |
short | outputLevel |
output verbosity level: {SILENT,QUIET,NORMAL,VERBOSE,DEBUG}_OUTPUT | |
bool | summaryOutputFlag |
flag for summary output (evaluation stats, final results); default true, but false for on-the-fly (helper) iterators and sub-iterator use cases | |
ResultsManager & | resultsDB |
reference to the global iterator results database | |
EvaluationStore & | evaluationsDB |
reference to the global evaluation database | |
EvaluationsDBState | evaluationsDBState |
State of evaluations DB for this iterator. | |
ResultsNames | resultsNames |
valid names for iterator results | |
std::shared_ptr< TraitsBase > | methodTraits |
pointer that retains shared ownership of a TraitsBase object, or child thereof | |
bool | topLevel |
Whether this is the top level iterator. | |
bool | exportSurrogate = false |
whether to export final surrogates | |
String | surrExportPrefix |
base filename for exported surrogates | |
unsigned short | surrExportFormat = NO_MODEL_FORMAT |
(bitwise) format(s) to export | |
Static Protected Attributes | |
static NonDBayesCalibration * | nonDBayesInstance |
Pointer to current class instance for use in static callback functions. | |
Static Protected Attributes inherited from NonD | |
static NonD * | nondInstance |
pointer to the active object instance used within static evaluator functions in order to avoid the need for static data | |
Base class for Bayesian inference: generates posterior distribution on model parameters given experimental data.
This class will eventually provide a general-purpose framework for Bayesian inference. In the short term, it only collects shared code between QUESO and GPMSA implementations.
NonDBayesCalibration | ( | ProblemDescDB & | problem_db, |
Model & | model | ||
) |
standard constructor
This constructor is called for a standard letter-envelope iterator instantiation. In this case, set_db_list_nodes has been called and probDescDB can be queried for settings from the method specification.
References Dakota::abort_handler(), NonDBayesCalibration::adaptExpDesign, NonDBayesCalibration::adaptPosteriorRefine, Model::all_continuous_variables(), Iterator::assign_rep(), Model::assign_rep(), NonDBayesCalibration::batchSize, NonDBayesCalibration::burnInSamples, NonDCalibration::calibrationData, NonDBayesCalibration::chainSamples, NonDBayesCalibration::construct_map_model(), NonDBayesCalibration::construct_mcmc_model(), Model::continuous_lower_bound(), Model::continuous_upper_bound(), Dakota::copy_data_partial(), Model::current_variables(), Variables::cv(), Variables::cv_start(), NonDBayesCalibration::emulatorType, NonDCalibration::expData, Dakota::generate_system_seed(), ProblemDescDB::get_bool(), NonDBayesCalibration::hifiModel, NonDBayesCalibration::hifiSampler, NonDBayesCalibration::init_hyper_parameters(), NonDBayesCalibration::init_map_optimizer(), NonDBayesCalibration::initHifiSamples, NonDBayesCalibration::invGammaDists, Iterator::iteratedModel, NonDBayesCalibration::mapSoln, Iterator::maxEvalConcurrency, Iterator::maxIterations, NonDBayesCalibration::mcmcDerivOrder, NonDBayesCalibration::mcmcModel, Model::model_type(), Model::multivariate_distribution(), ExperimentData::num_experiments(), Analyzer::numContinuousVars, NonDBayesCalibration::numHyperparams, NonDBayesCalibration::obsErrorMultiplierMode, Iterator::probDescDB, NonDBayesCalibration::randomSeed, NonDBayesCalibration::residualModel, NonDBayesCalibration::scale_model(), NonDBayesCalibration::scaleFlag, NonDBayesCalibration::standardizedSpace, NonDBayesCalibration::subSamplingPeriod, Dakota::SZ_MAX, Model::truth_model(), Analyzer::vary_pattern(), Variables::view(), NonDBayesCalibration::weight_model(), and NonDBayesCalibration::weightFlag.
void prior_mean | ( | VectorType & | mean_vec | ) | const |
return the mean of the prior distribution
Assume the target mean_vec is sized by client
References NonDBayesCalibration::invGammaDists, Iterator::iteratedModel, Model::multivariate_distribution(), Analyzer::numContinuousVars, NonDBayesCalibration::numHyperparams, NonDBayesCalibration::residualModel, and NonDBayesCalibration::standardizedSpace.
void prior_variance | ( | MatrixType & | var_mat | ) | const |
return the covariance of the prior distribution
Assumes the target var_mat is sized by client
References NonDBayesCalibration::invGammaDists, Iterator::iteratedModel, Model::multivariate_distribution(), Analyzer::numContinuousVars, NonDBayesCalibration::numHyperparams, NonDBayesCalibration::residualModel, and NonDBayesCalibration::standardizedSpace.
|
protectedvirtual |
pre-run portion of run (optional); re-implemented by Iterators which can generate all Variables (parameter sets) a priori
pre-run phase, which a derived iterator may optionally reimplement; when not present, pre-run is likely integrated into the derived run function. This is a virtual function; when re-implementing, a derived class must call its nearest parent's pre_run(), if implemented, typically before performing its own implementation steps.
Reimplemented from Analyzer.
References NonDBayesCalibration::construct_map_optimizer(), Model::is_null(), NonDBayesCalibration::negLogPostModel, Analyzer::pre_run(), NonDBayesCalibration::residualModel, and Model::update_from_subordinate_model().
|
protectedvirtual |
core portion of run; implemented by all derived classes and may include pre/post steps in lieu of separate pre/post
Virtual run function for the iterator class hierarchy. All derived classes need to redefine it.
Reimplemented from Iterator.
References NonDBayesCalibration::adaptExpDesign, NonDBayesCalibration::adaptPosteriorRefine, NonDBayesCalibration::build_model_discrepancy(), NonDBayesCalibration::calibrate(), NonDBayesCalibration::calibrate_to_hifi(), NonDBayesCalibration::calibrate_with_adaptive_emulator(), NonDBayesCalibration::calModelDiscrepancy, NonDBayesCalibration::compute_statistics(), NonDBayesCalibration::initialize_model(), NonDBayesCalibration::nonDBayesInstance, and NonDBayesCalibration::specify_prior().
|
protectedvirtual |
print the final iterator results
This virtual function provides additional iterator-specific final results outputs beyond the function evaluation summary printed in finalize_run().
Reimplemented from Analyzer.
Reimplemented in NonDWASABIBayesCalibration, NonDQUESOBayesCalibration, NonDMUQBayesCalibration, and NonDGPMSABayesCalibration.
References NonDBayesCalibration::chainDiagnostics, Model::continuous_variable_labels(), Dakota::copy_data(), Model::current_response(), NonDBayesCalibration::filteredFnVals, Response::function_labels(), Dakota::length(), NonDBayesCalibration::mcmcModel, Iterator::outputLevel, NonDBayesCalibration::posteriorStatsKL, NonDBayesCalibration::predVals, NonDSampling::print_moments(), NonD::requestedProbLevels, and NonDBayesCalibration::residualModel.
Referenced by NonDGPMSABayesCalibration::print_results(), NonDMUQBayesCalibration::print_results(), and NonDQUESOBayesCalibration::print_results().
|
inlineprotectedvirtual |
default definition that gets redefined in selected derived Minimizers
Reimplemented from Analyzer.
References NonDBayesCalibration::residualModel.
|
protected |
initialize the MAP optimizer selection
Construct optimizer for MAP pre-solve Emulator: on by default; can be overridden with "pre_solve none" No emulator: off by default; can be activated with "pre_solve {sqp,nip}" relies on mapOptimizer ctor to enforce min derivative support Calculation of model evidence using Laplace approximation: this requires a MAP solve.
References Dakota::abort_handler(), NonDBayesCalibration::calModelEvidLaplace, NonDBayesCalibration::emulatorType, and NonDBayesCalibration::mapOptAlgOverride.
Referenced by NonDBayesCalibration::NonDBayesCalibration().
|
protectedvirtual |
Runs a pre-solve for the MAP point. If running calibrate_to_hifi() or calibrate_with_adaptive_emulator(), propagates the solution to the mapSoln variable. Returns the optimal solution as a vector.
References Variables::continuous_variables(), Dakota::copy_data(), Model::current_variables(), Iterator::is_null(), NonDBayesCalibration::mapOptimizer, NonDBayesCalibration::mapSoln, NonDBayesCalibration::negLogPostModel, NonDBayesCalibration::print_variables(), Iterator::run(), and Iterator::variables_results().
|
protected |
Run calibration, looping to refine emulator around posterior mode.
This method will perform a Bayesian calibration with an emulator, but periodically the emulator is updated with more sample points from the original model in the high-posterior-density region of parameter space.
References Dakota::abort_handler(), NonDBayesCalibration::assess_emulator_convergence(), NonDBayesCalibration::best_to_all(), NonDBayesCalibration::calibrate(), Analyzer::compactMode, Iterator::convergenceTol, NonDBayesCalibration::emulatorType, NonDBayesCalibration::filter_chain_by_conditioning(), Iterator::maxIterations, and NonDBayesCalibration::update_model().
Referenced by NonDBayesCalibration::core_run().
|
protected |
build matrix of candidate points
On entry, design_matrix already sized to numCandidates.
References Iterator::all_variables(), Iterator::assign_rep(), NonDBayesCalibration::hifiModel, NonDBayesCalibration::importCandFormat, NonDBayesCalibration::importCandPtsFile, NonDBayesCalibration::numCandidates, Iterator::outputLevel, Iterator::pre_run(), NonDBayesCalibration::randomSeed, and Analyzer::vary_pattern().
Referenced by NonDBayesCalibration::calibrate_to_hifi().
|
protected |
calculate log-likelihood from the passed residuals (assuming they are already sized and scaled by covariance / hyperparams...
Calculate the log-likelihood, accounting for contributions from covariance and hyperparameters, as well as constant term:
log(L) = -1/2*Nr*log(2*pi) - 1/2*log(det(Cov)) - 1/2*r'(Cov^{-1})*r
The passed residuals must already be size-adjusted, differenced with any data, if present, and scaled by covariance^{-1/2}.
References NonDCalibration::expData, Dakota::HALF_LOG_2PI, ExperimentData::half_log_cov_determinant(), Analyzer::numContinuousVars, NonDBayesCalibration::numHyperparams, and NonDBayesCalibration::obsErrorMultiplierMode.
Referenced by NonDBayesCalibration::calculate_evidence(), NonDQUESOBayesCalibration::dakotaLogLikelihood(), NonDBayesCalibration::neg_log_post_resp_mapping(), and NonDDREAMBayesCalibration::sample_likelihood().
|
staticprotected |
static function passed by pointer to negLogPostModel recast model
Response mapping callback used by RecastModel for MAP pre-solve. Computes
-log(post) = -log(like) - log(prior); where -log(like) = 1/2*Nr*log(2*pi) + 1/2*log(det(Cov)) + 1/2*r'(Cov^{-1})*r = 1/2*Nr*log(2*pi) + 1/2*log(det(Cov)) + misfit
(misfit defined as 1/2 r^T (mult^2*Gamma_d)^{-1} r) The passed residual_resp has been differenced, interpolated, and covariance-scaled
References Response::active_set_request_vector(), NonDBayesCalibration::augment_gradient_with_log_prior(), NonDBayesCalibration::augment_hessian_with_log_prior(), ExperimentData::build_gradient_of_sum_square_residuals(), ExperimentData::build_hessian_of_sum_square_residuals(), Variables::continuous_variables(), NonDCalibration::expData, Response::function_gradient_view(), Response::function_hessian_view(), Response::function_value(), Response::function_values(), ExperimentData::half_log_cov_det_gradient(), ExperimentData::half_log_cov_det_hessian(), NonDBayesCalibration::log_likelihood(), NonDBayesCalibration::log_prior_density(), NonDBayesCalibration::nonDBayesInstance, Analyzer::numContinuousVars, NonDBayesCalibration::numHyperparams, NonDBayesCalibration::obsErrorMultiplierMode, and Iterator::outputLevel.
Referenced by NonDBayesCalibration::calculate_evidence(), and NonDBayesCalibration::construct_map_model().
|
protected |
Wrap iteratedModel in a RecastModel that performs response scaling.
Wrap the residualModel in a scaling transformation, such that residualModel now contains a scaling recast model.
References Model::assign_rep(), Iterator::outputLevel, and NonDBayesCalibration::residualModel.
Referenced by NonDBayesCalibration::NonDBayesCalibration().
|
protected |
Wrap iteratedModel in a RecastModel that weights the residuals.
Setup Recast for weighting model. The weighting transformation doesn't resize, and makes no vars, active set or secondary mapping. All indices are one-to-one mapped (no change in counts).
References Dakota::abort_handler(), Model::assign_rep(), Iterator::outputLevel, Model::primary_response_fn_weights(), and NonDBayesCalibration::residualModel.
Referenced by NonDBayesCalibration::NonDBayesCalibration().
|
protected |
Print filtered posterior and function values (later: credibility and prediction intervals)
Print tabular file with filtered chain, function values, and pred values
References Variables::continuous_variables(), Variables::copy(), Model::current_response(), Model::current_variables(), NonDBayesCalibration::exportMCMCFilename, NonDBayesCalibration::exportMCMCFormat, Response::function_labels(), Model::interface_id(), NonDBayesCalibration::mcmcModel, Analyzer::numFunctions, NonDBayesCalibration::residualModel, Dakota::write_precision, and Variables::write_tabular().
|
protected |
Post-processing-related controls.
accumulation of acceptance chain across restarts (stored in user-space) TO DO: retire once restarts are retired; optimize to convert to user-space only in final results
Referenced by NonDDREAMBayesCalibration::archive_acceptance_chain(), NonDGPMSABayesCalibration::cache_acceptance_chain(), NonDMUQBayesCalibration::cache_chain(), NonDQUESOBayesCalibration::cache_chain(), NonDDREAMBayesCalibration::cache_chain(), NonDBayesCalibration::calculate_kde(), NonDBayesCalibration::calibrate_to_hifi(), NonDBayesCalibration::compute_statistics(), and NonDBayesCalibration::kl_post_prior().