Dakota
Version
Explore and Predict with Confidence
|
Wrapper class for the DOT optimization library. More...
Public Member Functions | |
DOTTraits () | |
default constructor | |
virtual | ~DOTTraits () |
destructor | |
virtual bool | is_derived () |
A temporary query used in the refactor. | |
bool | supports_continuous_variables () |
Return the flag indicating whether method supports continuous variables. | |
bool | supports_linear_equality () |
Return the flag indicating whether method supports linear equalities. | |
bool | supports_linear_inequality () |
Return the flag indicating whether method supports linear inequalities. | |
LINEAR_INEQUALITY_FORMAT | linear_inequality_format () |
Return the format used for linear inequality constraints. | |
bool | supports_nonlinear_equality () |
Return the flag indicating whether method supports nonlinear equalities. | |
bool | supports_nonlinear_inequality () |
Return the flag indicating whether method supports nonlinear inequalities. | |
NONLINEAR_INEQUALITY_FORMAT | nonlinear_inequality_format () |
Return the format used for nonlinear inequality constraints. | |
Public Member Functions inherited from TraitsBase | |
TraitsBase () | |
default constructor | |
virtual | ~TraitsBase () |
destructor | |
virtual bool | requires_bounds () |
Return the flag indicating whether method requires bounds. | |
virtual NONLINEAR_EQUALITY_FORMAT | nonlinear_equality_format () |
Return the format used for nonlinear equality constraints. | |
virtual bool | expects_nonlinear_inequalities_first () |
Return the flag indicating whether method expects nonlinear inequality constraints followed by nonlinear equality constraints. | |
virtual bool | supports_scaling () |
Return the flag indicating whether method supports parameter scaling. | |
virtual bool | supports_least_squares () |
Return the flag indicating whether method supports least squares. | |
virtual bool | supports_multiobjectives () |
Return flag indicating whether method supports multiobjective optimization. | |
virtual bool | supports_discrete_variables () |
Return the flag indicating whether method supports continuous variables. | |
virtual bool | provides_best_objective () |
Return the flag indicating whether method provides best objective result. | |
virtual bool | provides_best_parameters () |
Return the flag indicating whether method provides best parameters result. | |
virtual bool | provides_best_constraint () |
Return the flag indicating whether method provides best constraint result. | |
virtual bool | provides_final_gradient () |
Return the flag indicating whether method provides final gradient result. | |
virtual bool | provides_final_hessian () |
Return the flag indicating whether method provides final hessian result. | |
Wrapper class for the DOT optimization library.
The DOTOptimizer class provides a wrapper for DOT, a commercial Fortran 77 optimization library from Vanderplaats Research and Development. It uses a reverse communication mode, which avoids the static member function issues that arise with function pointer designs (see NPSOLOptimizer and SNLLOptimizer).
The user input mappings are as follows: max_iterations
is mapped into DOT's ITMAX
parameter within its IPRM
array, max_function_evaluations
is implemented directly in the core_run() loop since there is no DOT parameter equivalent, convergence_tolerance
is mapped into DOT's DELOBJ
parameter (the relative convergence tolerance) within its RPRM
array, output
verbosity is mapped into DOT's IPRINT
parameter within its function call parameter list (verbose: IPRINT
= 7; quiet: IPRINT
= 3), and optimization_type
is mapped into DOT's MINMAX
parameter within its function call parameter list. Refer to [Vanderplaats Research and Development, 1995] for information on IPRM
, RPRM
, and the DOT function call parameter list.
A version of TraitsBase specialized for DOT optimizers