muq
Markov Chain Monte Carlo algorithms from the MUQ package
Topics
bayesian_calibration
Specification
Alias: None
Arguments: None
Child Keywords:
Required/Optional |
Description of Group |
Dakota Keyword |
Dakota Keyword Description |
---|---|---|---|
Required |
Number of Markov Chain Monte Carlo posterior samples |
||
Optional |
Seed of the random number generator |
||
Optional |
Selection of a random number generator |
||
Optional (Choose One) |
MCMC Algorithm |
Use the DRAM MCMC algorithm |
|
Use the Delayed Rejection MCMC algorithm |
|||
Use the Adaptive Metropolis MCMC algorithm |
|||
Use the Metropolis-Hastings MCMC algorithm |
|||
Optional |
Defines the technique used to generate the MCMC proposal covariance. |
Description
The muq
method supports the following MCMC algorithms:
adaptive metropolis (AM), Metropolis Hasting (MH), delayed
rejection (DR), or delayed-rejection adaptive metropolis (DRAM).
The muq
method is currently an experimental method that relies
on algorithms from MIT’s MUQ code documented at:
https://bitbucket.org/mituq/muq2/src/master/
We anticipate using more advanced features of MUQ such as Hamiltonian Monte Carlo and Langevin methods in future releases of Dakota.