muq

Markov Chain Monte Carlo algorithms from the MUQ package

Topics

bayesian_calibration

Specification

  • Alias: None

  • Arguments: None

Child Keywords:

Required/Optional

Description of Group

Dakota Keyword

Dakota Keyword Description

Required

chain_samples

Number of Markov Chain Monte Carlo posterior samples

Optional

seed

Seed of the random number generator

Optional

rng

Selection of a random number generator

Optional

export_chain_points_file

Export the MCMC chain to the specified filename

Optional (Choose One)

MCMC Algorithm

adaptive_metropolis

Use the Adaptive Metropolis MCMC algorithm

delayed_rejection

Use the Delayed Rejection MCMC algorithm

dili

Dimension-independent likelihood-informed MCMC

dram

Use the DRAM MCMC algorithm

mala

Metropolis-adjusted Langevin algorithm

metropolis_hastings

Use the Metropolis-Hastings MCMC algorithm

Optional

pre_solve

Perform deterministic optimization for MAP before Bayesian calibration

Optional

proposal_covariance

Defines the technique used to generate the MCMC proposal covariance.

Description

The muq method supports the following MCMC algorithms: adaptive metropolis (AM), Metropolis Hasting (MH), delayed rejection (DR), delayed-rejection adaptive metropolis (DRAM), Metropolis-adjusted Langevin algorithm (MALA), or dimension-independent likelihood-informed (DILI).

The muq method is currently an experimental method that relies on algorithms from MIT’s MUQ code documented at: https://bitbucket.org/mituq/muq2/src/master/