.. _method-bayes_calibration-muq: """ muq """ Markov Chain Monte Carlo algorithms from the MUQ package **Topics** bayesian_calibration .. toctree:: :hidden: :maxdepth: 1 method-bayes_calibration-muq-chain_samples method-bayes_calibration-muq-seed method-bayes_calibration-muq-rng method-bayes_calibration-muq-export_chain_points_file method-bayes_calibration-muq-adaptive_metropolis method-bayes_calibration-muq-delayed_rejection method-bayes_calibration-muq-dili method-bayes_calibration-muq-dram method-bayes_calibration-muq-mala method-bayes_calibration-muq-metropolis_hastings method-bayes_calibration-muq-pre_solve method-bayes_calibration-muq-proposal_covariance **Specification** - *Alias:* None - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+==============================+===============================================+ | Required | `chain_samples`__ | Number of Markov Chain Monte Carlo posterior | | | | samples | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `seed`__ | Seed of the random number generator | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `rng`__ | Selection of a random number generator | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `export_chain_points_file`__ | Export the MCMC chain to the specified | | | | filename | +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Optional (Choose One) | MCMC Algorithm | `adaptive_metropolis`__ | Use the Adaptive Metropolis MCMC algorithm | | | +------------------------------+-----------------------------------------------+ | | | `delayed_rejection`__ | Use the Delayed Rejection MCMC algorithm | | | +------------------------------+-----------------------------------------------+ | | | `dili`__ | Dimension-independent likelihood-informed | | | | | MCMC | | | +------------------------------+-----------------------------------------------+ | | | `dram`__ | Use the DRAM MCMC algorithm | | | +------------------------------+-----------------------------------------------+ | | | `mala`__ | Metropolis-adjusted Langevin algorithm | | | +------------------------------+-----------------------------------------------+ | | | `metropolis_hastings`__ | Use the Metropolis-Hastings MCMC algorithm | +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Optional | `pre_solve`__ | Perform deterministic optimization for MAP | | | | before Bayesian calibration | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `proposal_covariance`__ | Defines the technique used to generate the | | | | MCMC proposal covariance. | +----------------------------------------------+------------------------------+-----------------------------------------------+ .. __: method-bayes_calibration-muq-chain_samples.html __ method-bayes_calibration-muq-seed.html __ method-bayes_calibration-muq-rng.html __ method-bayes_calibration-muq-export_chain_points_file.html __ method-bayes_calibration-muq-adaptive_metropolis.html __ method-bayes_calibration-muq-delayed_rejection.html __ method-bayes_calibration-muq-dili.html __ method-bayes_calibration-muq-dram.html __ method-bayes_calibration-muq-mala.html __ method-bayes_calibration-muq-metropolis_hastings.html __ method-bayes_calibration-muq-pre_solve.html __ method-bayes_calibration-muq-proposal_covariance.html **Description** The ``muq`` method supports the following MCMC algorithms: adaptive metropolis (AM), Metropolis Hasting (MH), delayed rejection (DR), delayed-rejection adaptive metropolis (DRAM), Metropolis-adjusted Langevin algorithm (MALA), or dimension-independent likelihood-informed (DILI). The ``muq`` method is currently an experimental method that relies on algorithms from MIT's MUQ code documented at: https://bitbucket.org/mituq/muq2/src/master/