weighted

Include control variate weights for each of the recursive differences using in multilevel Monte Carlo (MLMC)

Specification

  • Alias: None

  • Arguments: None

Child Keywords:

Required/Optional

Description of Group

Dakota Keyword

Dakota Keyword Description

Optional

search_model_graphs

For weighted multilevel Monte Carlo, this option activates a search over possible hierarchical model graphs

Description

Referring to generalized ACV (search_model_graphs and [BLWL22]), weighted MLMC is a special case of generalized ACV-RD (acv_recursive_diff) where a hierarchical DAG is employed across the model approximations. As such, a weighted MLMC specification forwards to the generalized ACV solver, but with fixing the DAG to be hierarchical (each approximation node points to the next approximation of higher fidelity/resolution, ending with the truth model at the root node) and fixing the sampling scheme to be ACV-RD.

While the use of a hierarchical DAG is required, the approximation selections and orderings within this DAG can be varied, so generalized ACV capabilities for model graph search (different hierarchical orderings) and model selection (different approximation subsets) are available for a specification of weighted MLMC – see search_model_graphs.

Theory

Refer to [BLWL22] for understanding ACV generalizations for the different control variate pairings that are possible when codified into a more comprehensive set of potential DAGs.