Dakota  Version 6.21
Explore and Predict with Confidence
Public Member Functions | List of all members
DOTTraits Class Reference

Wrapper class for the DOT optimization library. More...

Inheritance diagram for DOTTraits:
TraitsBase

Public Member Functions

 DOTTraits ()
 default constructor
 
virtual ~DOTTraits ()
 destructor
 
virtual bool is_derived ()
 A temporary query used in the refactor.
 
bool supports_continuous_variables ()
 Return the flag indicating whether method supports continuous variables.
 
bool supports_linear_equality ()
 Return the flag indicating whether method supports linear equalities.
 
bool supports_linear_inequality ()
 Return the flag indicating whether method supports linear inequalities.
 
LINEAR_INEQUALITY_FORMAT linear_inequality_format ()
 Return the format used for linear inequality constraints.
 
bool supports_nonlinear_equality ()
 Return the flag indicating whether method supports nonlinear equalities.
 
bool supports_nonlinear_inequality ()
 Return the flag indicating whether method supports nonlinear inequalities.
 
NONLINEAR_INEQUALITY_FORMAT nonlinear_inequality_format ()
 Return the format used for nonlinear inequality constraints.
 
- Public Member Functions inherited from TraitsBase
 TraitsBase ()
 default constructor
 
virtual ~TraitsBase ()
 destructor
 
virtual bool requires_bounds ()
 Return the flag indicating whether method requires bounds.
 
virtual NONLINEAR_EQUALITY_FORMAT nonlinear_equality_format ()
 Return the format used for nonlinear equality constraints.
 
virtual bool expects_nonlinear_inequalities_first ()
 Return the flag indicating whether method expects nonlinear inequality constraints followed by nonlinear equality constraints.
 
virtual bool supports_scaling ()
 Return the flag indicating whether method supports parameter scaling.
 
virtual bool supports_least_squares ()
 Return the flag indicating whether method supports least squares.
 
virtual bool supports_multiobjectives ()
 Return flag indicating whether method supports multiobjective optimization.
 
virtual bool supports_discrete_variables ()
 Return the flag indicating whether method supports continuous variables.
 
virtual bool provides_best_objective ()
 Return the flag indicating whether method provides best objective result.
 
virtual bool provides_best_parameters ()
 Return the flag indicating whether method provides best parameters result.
 
virtual bool provides_best_constraint ()
 Return the flag indicating whether method provides best constraint result.
 
virtual bool provides_final_gradient ()
 Return the flag indicating whether method provides final gradient result.
 
virtual bool provides_final_hessian ()
 Return the flag indicating whether method provides final hessian result.
 

Detailed Description

Wrapper class for the DOT optimization library.

The DOTOptimizer class provides a wrapper for DOT, a commercial Fortran 77 optimization library from Vanderplaats Research and Development. It uses a reverse communication mode, which avoids the static member function issues that arise with function pointer designs (see NPSOLOptimizer and SNLLOptimizer).

The user input mappings are as follows: max_iterations is mapped into DOT's ITMAX parameter within its IPRM array, max_function_evaluations is implemented directly in the core_run() loop since there is no DOT parameter equivalent, convergence_tolerance is mapped into DOT's DELOBJ parameter (the relative convergence tolerance) within its RPRM array, output verbosity is mapped into DOT's IPRINT parameter within its function call parameter list (verbose: IPRINT = 7; quiet: IPRINT = 3), and optimization_type is mapped into DOT's MINMAX parameter within its function call parameter list. Refer to [Vanderplaats Research and Development, 1995] for information on IPRM, RPRM, and the DOT function call parameter list.

A version of TraitsBase specialized for DOT optimizers


The documentation for this class was generated from the following file: