![]()  | 
  
    Dakota
    Version 6.20
    
   Explore and Predict with Confidence 
   | 
 
namespace for new Dakota utilities module More...
Classes | |
| class | CholeskySolver | 
| The CholeskySolver class is used to solve linear systems with a symmetric matrix with a pivoted Cholesky decomposition.  More... | |
| class | DataScaler | 
| The DataScaler class computes the scaling coefficients and scales a 2D data matrix with dimensions num_samples by num_features.  More... | |
| class | LinearSolverBase | 
| The LinearSolverBase class serves as an API for derived solvers.  More... | |
| class | LUSolver | 
| The LUSolver class is used to solve linear systems with the LU decomposition.  More... | |
| class | NormalizationScaler | 
| Normalizes the data using max and min feature values.  More... | |
| class | NoScaler | 
| Leaves the data unscaled.  More... | |
| class | QRSolver | 
| The QRSolver class solves the linear least squares problem with a QR decomposition.  More... | |
| class | StandardizationScaler | 
| Standardizes the data so the each feature has zero mean and unit variance.  More... | |
| class | SVDSolver | 
| The SVDSolver class is used to solve linear systems with the singular value decomposition.  More... | |
Typedefs | |
| using | BimapMetrictypeStr = boost::bimap< METRIC_TYPE, std::string > | 
| alias for Boost Bimap metric type <--> string  | |
| using | SCALER_TYPE = DataScaler::SCALER_TYPE | 
| alias for DataScaler's SCALER_TYPE  | |
| using | BimapScalertypeStr = boost::bimap< SCALER_TYPE, std::string > | 
| alias for Boost Bimap scaler type <--> string  | |
| using | SOLVER_TYPE = LinearSolverBase::SOLVER_TYPE | 
| alias for LinearSolverBase's SOLVER_TYPE  | |
| using | BimapSolvertypeStr = boost::bimap< SOLVER_TYPE, std::string > | 
| alias for Boost Bimap solver type <--> string  | |
Enumerations | |
| enum | METRIC_TYPE {  SUM_SQUARED, MEAN_SQUARED, ROOT_MEAN_SQUARED, SUM_ABS, MEAN_ABS, MAX_ABS, ABS_PERCENTAGE_ERROR, MEAN_ABS_PERCENTAGE_ERROR, R_SQUARED }  | 
| Enumeration for supported metric types.  | |
Functions | |
| void | error (const std::string &msg) | 
| Throws a std::runtime_error based on the message argument.  More... | |
| bool | matrix_equals (const MatrixXi &A, const MatrixXi &B) | 
| Tests whether two Eigen MatrixXi objects are equal.  More... | |
| bool | matrix_equals (const MatrixXd &A, const MatrixXd &B, double tol) | 
| Tests whether two Eigen MatrixXd objects are equal, within a given tolerance.  More... | |
| bool | matrix_equals (const RealMatrix &A, const RealMatrix &B, double tol) | 
| Tests whether two Teuchos RealMatrix objects are equal, within a given tolerance.  More... | |
| bool | relative_allclose (const MatrixXd &A, const MatrixXd &B, const double tol) | 
| Tests whether two Eigen MatrixXd objects relatively equal (element-wise) within a given tolerance.  More... | |
| double | variance (const VectorXd &vec) | 
| Calculates the variance based on an Eigen VectorXd of double values.  More... | |
| void | populateVectorsFromFile (const std::string &filename, std::vector< VectorXd > &R, int num_datasets, int num_samples) | 
| Populate a collection of vectors read in a from a text file assuming data layout is one dataset per row.  More... | |
| void | populateMatricesFromFile (const std::string &filename, std::vector< MatrixXd > &S, int num_datasets, int num_vars, int num_samples) | 
| Populate a collection of matrices read in a from a text file assuming data layout is a "column-major" stack of num_samples by num_vars matrices.  More... | |
| int | n_choose_k (int n, int k) | 
| Calculate Binomial coefficient n choose k.  More... | |
| void | random_permutation (const int num_pts, const unsigned int seed, VectorXi &permutations) | 
| Random permutation of int array.  | |
| void | create_cv_folds (const int num_folds, const int num_pts, std::vector< VectorXi > &fold_indices, const int seed=22) | 
| Generate indices for cross validation folds.  | |
| MatrixXd | create_uniform_random_double_matrix (const int rows, const int cols) | 
| Generate a real-valued matrix of uniformly distributed random values.  | |
| MatrixXd | create_uniform_random_double_matrix (const int rows, const int cols, const unsigned int seed) | 
| Generate a real-valued matrix of uniformly distributed random values.  | |
| MatrixXd | create_uniform_random_double_matrix (const int rows, const int cols, const unsigned int seed, bool transform, const double low, const double high) | 
| Generate a real-valued matrix of uniformly distributed random values.  | |
| template<typename T > | |
| int | num_nonzeros (const T &mat) | 
| Caclulate and return number of nonzero entries in vector or matrix.  More... | |
| template<typename T1 , typename T2 > | |
| void | nonzero (const T1 &v, T2 &result) | 
| Create a vector of indices based on nonzero entries in input vector.  More... | |
| template<typename T1 , typename T2 > | |
| void | append_columns (const T1 &new_cols, T2 &target) | 
| Append columns of input matrix to existing matrix.  More... | |
| template<typename T > | |
| double | p_norm (const T &v, double p) | 
| Caclulate and return p-norm of a vector.  More... | |
| METRIC_TYPE | metric_type (const std::string &metric_name) | 
| Convert the metric from string to enum.  More... | |
| double | compute_metric (const VectorXd &p, const VectorXd &d, const std::string &metric_name) | 
| Computes the difference between prediction and data vectors.  More... | |
| std::shared_ptr< DataScaler > | scaler_factory (DataScaler::SCALER_TYPE scaler_type, const MatrixXd &unscaled_matrix) | 
| Free function to construct DataScaler.  More... | |
| std::shared_ptr< LinearSolverBase > | solver_factory (LinearSolverBase::SOLVER_TYPE type) | 
| Free function to construct LinearSolverBase.  More... | |
Variables | |
| static BimapMetrictypeStr | type_name_bimap | 
| Bimap between metric types and names.  More... | |
| static BimapScalertypeStr | type_name_bimap | 
| Bimap between scaler types and names.  More... | |
| static BimapSolvertypeStr | type_name_bimap | 
| Bimap between solver types and names.  More... | |
namespace for new Dakota utilities module
| void error | ( | const std::string & | msg | ) | 
Throws a std::runtime_error based on the message argument.
| [in] | msg | The error message to throw | 
Referenced by compute_metric(), create_cv_folds(), and matrix_equals().
Tests whether two Eigen MatrixXi objects are equal.
| [in] | A | The first matrix to test | 
| [in] | B | The second matrix to test | 
Tests whether two Eigen MatrixXd objects are equal, within a given tolerance.
| [in] | A | The first matrix to test | 
| [in] | B | The second matrix to test | 
| [in] | tol | The tolerance to use when comparing double values | 
References error().
| bool matrix_equals | ( | const RealMatrix & | A, | 
| const RealMatrix & | B, | ||
| double | tol | ||
| ) | 
Tests whether two Teuchos RealMatrix objects are equal, within a given tolerance.
| [in] | A | The first matrix to test | 
| [in] | B | The second matrix to test | 
| [in] | tol | The tolerance to use when comparing double values | 
References error().
Tests whether two Eigen MatrixXd objects relatively equal (element-wise) within a given tolerance.
| [in] | A | The first matrix to test | 
| [in] | B | The second matrix to test | 
| [in] | tol | The relative tolerance to use when comparing double values | 
| double variance | ( | const VectorXd & | vec | ) | 
Calculates the variance based on an Eigen VectorXd of double values.
| [in] | vec | The vector | 
| void populateVectorsFromFile | ( | const std::string & | filename, | 
| std::vector< VectorXd > & | R, | ||
| int | num_datasets, | ||
| int | num_samples | ||
| ) | 
Populate a collection of vectors read in a from a text file assuming data layout is one dataset per row.
| [in] | filename | The file that contains the data | 
| [out] | R | The collection of vectors to be populated | 
| [in] | num_datasets | The number of datasets to read in | 
| [in] | num_samples | The number of data points (e.g. function values, build points) per dataset | 
| void populateMatricesFromFile | ( | const std::string & | filename, | 
| std::vector< MatrixXd > & | S, | ||
| int | num_datasets, | ||
| int | num_vars, | ||
| int | num_samples | ||
| ) | 
Populate a collection of matrices read in a from a text file assuming data layout is a "column-major" stack of num_samples by num_vars matrices.
| [in] | filename | The file that contains the data | 
| [out] | S | The collection of vectors to be populated | 
| [in] | num_datasets | The number of datasets to read in | 
| [in] | num_samples | The number of data points (e.g. function values, build points) per dataset (row dim) | 
| [in] | num_vars | The number of variables per dataset (column dim) | 
| int n_choose_k | ( | int | n, | 
| int | k | ||
| ) | 
Calculate Binomial coefficient n choose k.
| [in] | n | Number of elements in set | 
| [in] | k | Number of elements in subset k where n >= k >= 0 | 
Referenced by dakota::surrogates::size_level_index_vector().
| int dakota::util::num_nonzeros | ( | const T & | mat | ) | 
Caclulate and return number of nonzero entries in vector or matrix.
| [in] | mat | Incoming vector or matrix | 
Referenced by dakota::surrogates::compute_hyperbolic_level_indices(), dakota::surrogates::compute_hyperbolic_subdim_level_indices(), and nonzero().
| void dakota::util::nonzero | ( | const T1 & | v, | 
| T2 & | result | ||
| ) | 
Create a vector of indices based on nonzero entries in input vector.
| [in] | v | Incoming vector | 
| [out] | result | Vector having values at nonzero locations of incoming vector and value equal to ordinal of occurrence | 
References num_nonzeros().
Referenced by dakota::surrogates::compute_hyperbolic_level_indices().
| void dakota::util::append_columns | ( | const T1 & | new_cols, | 
| T2 & | target | ||
| ) | 
Append columns of input matrix to existing matrix.
| [in] | new_cols | Incoming matrix of column vectors to append | 
| [out] | target | Matrix to augment with appended columns | 
Referenced by dakota::surrogates::compute_hyperbolic_indices(), dakota::surrogates::compute_hyperbolic_level_indices(), and dakota::surrogates::compute_reduced_indices().
| double dakota::util::p_norm | ( | const T & | v, | 
| double | p | ||
| ) | 
Caclulate and return p-norm of a vector.
| [in] | v | Incoming vector | 
| [in] | p | Order or norm to compute | 
Referenced by dakota::surrogates::compute_hyperbolic_subdim_level_indices().
| METRIC_TYPE metric_type | ( | const std::string & | metric_name | ) | 
Convert the metric from string to enum.
| [in] | metric_name | metric | 
References type_name_bimap.
Referenced by compute_metric().
Computes the difference between prediction and data vectors.
| [in] | p | prediction vector. | 
| [in] | d | data vector. | 
| [in] | metric_name | metric to compute. | 
References error(), and metric_type().
Referenced by Dakota::compute_regression_coeffs(), and Surrogate::evaluate_metrics().
| std::shared_ptr< DataScaler > scaler_factory | ( | DataScaler::SCALER_TYPE | scaler_type, | 
| const MatrixXd & | unscaled_matrix | ||
| ) | 
Free function to construct DataScaler.
| [in] | scaler_type | Which scaler to construct | 
| [in] | unscaled_matrix | Unscaled data matrix - (num_samples by num_features) | 
Referenced by GaussianProcess::build(), and PolynomialRegression::build().
| std::shared_ptr< LinearSolverBase > solver_factory | ( | LinearSolverBase::SOLVER_TYPE | type | ) | 
Free function to construct LinearSolverBase.
| [in] | type | Which solver to construct | 
Referenced by PolynomialRegression::build().
      
  | 
  static | 
Bimap between metric types and names.
Referenced by metric_type(), DataScaler::scaler_type(), and LinearSolverBase::solver_type().
      
  | 
  static | 
Bimap between scaler types and names.
      
  | 
  static | 
Bimap between solver types and names.