Kernel functions for the Gaussian Process surrogate.  
 More...
 | 
| virtual void  | compute_gram (const std::vector< MatrixXd > &dists2, const VectorXd &theta_values, MatrixXd &gram)=0 | 
|   | Compute a Gram matrix given a vector of squared distances and kernel hyperparameters.  More...
  | 
|   | 
| virtual void  | compute_gram_derivs (const MatrixXd &gram, const std::vector< MatrixXd > &dists2, const VectorXd &theta_values, std::vector< MatrixXd > &gram_derivs)=0 | 
|   | Compute the derivatives of the Gram matrix with respect to the kernel hyperparameters.  More...
  | 
|   | 
| virtual MatrixXd  | compute_first_deriv_pred_gram (const MatrixXd &pred_gram, const std::vector< MatrixXd > &mixed_dists, const VectorXd &theta_values, const int index)=0 | 
|   | Compute the first derivatve of the prediction matrix for a given component.  More...
  | 
|   | 
| virtual MatrixXd  | compute_second_deriv_pred_gram (const MatrixXd &pred_gram, const std::vector< MatrixXd > &mixed_dists, const VectorXd &theta_values, const int index_i, const int index_j)=0 | 
|   | Compute the second derivatve of the prediction matrix for a pair of components.  More...
  | 
|   | 
Kernel functions for the Gaussian Process surrogate. 
 
◆ compute_gram()
Compute a Gram matrix given a vector of squared distances and kernel hyperparameters. 
- Parameters
 - 
  
    | [in] | dists2 | Vector of squared distance matrices.  | 
    | [in] | theta_values | Vector of hyperparameters.  | 
    | [in,out] | gram | Gram matrix.  | 
  
   
- Returns
 - Gram matrix. 
 
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
 
 
◆ compute_gram_derivs()
  
  
      
        
          | virtual void compute_gram_derivs  | 
          ( | 
          const MatrixXd &  | 
          gram,  | 
         
        
           | 
           | 
          const std::vector< MatrixXd > &  | 
          dists2,  | 
         
        
           | 
           | 
          const VectorXd &  | 
          theta_values,  | 
         
        
           | 
           | 
          std::vector< MatrixXd > &  | 
          gram_derivs  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
pure virtual   | 
  
 
Compute the derivatives of the Gram matrix with respect to the kernel hyperparameters. 
- Parameters
 - 
  
    | [in] | gram | Gram Matrix  | 
    | [in] | dists2 | Vector of squared distance matrices.  | 
    | [in] | theta_values | Vector of hyperparameters.  | 
    | [in,out] | gram_derivs | Vector of Gram matrix derivatives.  | 
  
   
- Returns
 - Derivatives of the Gram matrix w.r.t. the hyperparameters. 
 
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
 
 
◆ compute_first_deriv_pred_gram()
  
  
      
        
          | virtual MatrixXd compute_first_deriv_pred_gram  | 
          ( | 
          const MatrixXd &  | 
          pred_gram,  | 
         
        
           | 
           | 
          const std::vector< MatrixXd > &  | 
          mixed_dists,  | 
         
        
           | 
           | 
          const VectorXd &  | 
          theta_values,  | 
         
        
           | 
           | 
          const int  | 
          index  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
pure virtual   | 
  
 
Compute the first derivatve of the prediction matrix for a given component. 
- Parameters
 - 
  
    | [in] | pred_gram | Prediction Gram matrix - Rectangular matrix of kernel evaluations between the surrogate and prediction points.  | 
    | [in] | mixed_dists | Component-wise signed distances between the prediction and build points.  | 
    | [in] | theta_values | Vector of hyperparameters.  | 
    | [in] | index | Specifies the component of the derivative.  | 
  
   
- Returns
 - first_deriv_pred_gram First derivative of the prediction Gram matrix for a given component. 
 
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
 
 
◆ compute_second_deriv_pred_gram()
  
  
      
        
          | virtual MatrixXd compute_second_deriv_pred_gram  | 
          ( | 
          const MatrixXd &  | 
          pred_gram,  | 
         
        
           | 
           | 
          const std::vector< MatrixXd > &  | 
          mixed_dists,  | 
         
        
           | 
           | 
          const VectorXd &  | 
          theta_values,  | 
         
        
           | 
           | 
          const int  | 
          index_i,  | 
         
        
           | 
           | 
          const int  | 
          index_j  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
pure virtual   | 
  
 
Compute the second derivatve of the prediction matrix for a pair of components. 
- Parameters
 - 
  
    | [in] | pred_gram | Prediction Gram matrix - Rectangular matrix of kernel evaluations between the surrogate and prediction points.  | 
    | [in] | mixed_dists | Component-wise signed distances between the prediction and build points.  | 
    | [in] | theta_values | Vector of hyperparameters.  | 
    | [in] | index_i | Specifies the first component of the second derivative.  | 
    | [in] | index_j | Specifies the second component of the second derivative.  | 
  
   
- Returns
 - second_deriv_pred_gram Second derivative of the prediction matrix for a pair of components. 
 
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
 
 
◆ compute_Dbar()
  
  
      
        
          | void compute_Dbar  | 
          ( | 
          const std::vector< MatrixXd > &  | 
          cw_dists2,  | 
         
        
           | 
           | 
          const VectorXd &  | 
          theta_values,  | 
         
        
           | 
           | 
          bool  | 
          take_sqrt = true  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
protected   | 
  
 
 
The documentation for this class was generated from the following files:
- SurrogatesGPKernels.hpp
 
- SurrogatesGPKernels.cpp