Kernel functions for the Gaussian Process surrogate.
More...
|
virtual void | compute_gram (const std::vector< MatrixXd > &dists2, const VectorXd &theta_values, MatrixXd &gram)=0 |
| Compute a Gram matrix given a vector of squared distances and kernel hyperparameters. More...
|
|
virtual void | compute_gram_derivs (const MatrixXd &gram, const std::vector< MatrixXd > &dists2, const VectorXd &theta_values, std::vector< MatrixXd > &gram_derivs)=0 |
| Compute the derivatives of the Gram matrix with respect to the kernel hyperparameters. More...
|
|
virtual MatrixXd | compute_first_deriv_pred_gram (const MatrixXd &pred_gram, const std::vector< MatrixXd > &mixed_dists, const VectorXd &theta_values, const int index)=0 |
| Compute the first derivatve of the prediction matrix for a given component. More...
|
|
virtual MatrixXd | compute_second_deriv_pred_gram (const MatrixXd &pred_gram, const std::vector< MatrixXd > &mixed_dists, const VectorXd &theta_values, const int index_i, const int index_j)=0 |
| Compute the second derivatve of the prediction matrix for a pair of components. More...
|
|
Kernel functions for the Gaussian Process surrogate.
◆ compute_gram()
Compute a Gram matrix given a vector of squared distances and kernel hyperparameters.
- Parameters
-
[in] | dists2 | Vector of squared distance matrices. |
[in] | theta_values | Vector of hyperparameters. |
[in,out] | gram | Gram matrix. |
- Returns
- Gram matrix.
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
◆ compute_gram_derivs()
virtual void compute_gram_derivs |
( |
const MatrixXd & |
gram, |
|
|
const std::vector< MatrixXd > & |
dists2, |
|
|
const VectorXd & |
theta_values, |
|
|
std::vector< MatrixXd > & |
gram_derivs |
|
) |
| |
|
pure virtual |
Compute the derivatives of the Gram matrix with respect to the kernel hyperparameters.
- Parameters
-
[in] | gram | Gram Matrix |
[in] | dists2 | Vector of squared distance matrices. |
[in] | theta_values | Vector of hyperparameters. |
[in,out] | gram_derivs | Vector of Gram matrix derivatives. |
- Returns
- Derivatives of the Gram matrix w.r.t. the hyperparameters.
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
◆ compute_first_deriv_pred_gram()
virtual MatrixXd compute_first_deriv_pred_gram |
( |
const MatrixXd & |
pred_gram, |
|
|
const std::vector< MatrixXd > & |
mixed_dists, |
|
|
const VectorXd & |
theta_values, |
|
|
const int |
index |
|
) |
| |
|
pure virtual |
Compute the first derivatve of the prediction matrix for a given component.
- Parameters
-
[in] | pred_gram | Prediction Gram matrix - Rectangular matrix of kernel evaluations between the surrogate and prediction points. |
[in] | mixed_dists | Component-wise signed distances between the prediction and build points. |
[in] | theta_values | Vector of hyperparameters. |
[in] | index | Specifies the component of the derivative. |
- Returns
- first_deriv_pred_gram First derivative of the prediction Gram matrix for a given component.
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
◆ compute_second_deriv_pred_gram()
virtual MatrixXd compute_second_deriv_pred_gram |
( |
const MatrixXd & |
pred_gram, |
|
|
const std::vector< MatrixXd > & |
mixed_dists, |
|
|
const VectorXd & |
theta_values, |
|
|
const int |
index_i, |
|
|
const int |
index_j |
|
) |
| |
|
pure virtual |
Compute the second derivatve of the prediction matrix for a pair of components.
- Parameters
-
[in] | pred_gram | Prediction Gram matrix - Rectangular matrix of kernel evaluations between the surrogate and prediction points. |
[in] | mixed_dists | Component-wise signed distances between the prediction and build points. |
[in] | theta_values | Vector of hyperparameters. |
[in] | index_i | Specifies the first component of the second derivative. |
[in] | index_j | Specifies the second component of the second derivative. |
- Returns
- second_deriv_pred_gram Second derivative of the prediction matrix for a pair of components.
Implemented in Matern52Kernel, Matern32Kernel, and SquaredExponentialKernel.
◆ compute_Dbar()
void compute_Dbar |
( |
const std::vector< MatrixXd > & |
cw_dists2, |
|
|
const VectorXd & |
theta_values, |
|
|
bool |
take_sqrt = true |
|
) |
| |
|
protected |
The documentation for this class was generated from the following files:
- SurrogatesGPKernels.hpp
- SurrogatesGPKernels.cpp