Dakota
Version 6.20
Explore and Predict with Confidence
|
Wrapper class for the OPT++ optimization library. More...
Public Member Functions | |
SNLLLeastSq (ProblemDescDB &problem_db, Model &model) | |
standard constructor | |
SNLLLeastSq (const String &method_name, Model &model) | |
alternate constructor for instantiations without ProblemDescDB support | |
~SNLLLeastSq () | |
destructor | |
void | core_run () |
compute the least squares solution | |
void | reset () |
restore initial state for repeated sub-iterator executions | |
Public Member Functions inherited from Minimizer | |
void | constraint_tolerance (Real constr_tol) |
set the method constraint tolerance (constraintTol) | |
Real | constraint_tolerance () const |
return the method constraint tolerance (constraintTol) | |
std::shared_ptr< TPLDataTransfer > | get_data_transfer_helper () const |
bool | resize () |
reinitializes iterator based on new variable size | |
Public Member Functions inherited from Iterator | |
Iterator (std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
default constructor More... | |
Iterator (ProblemDescDB &problem_db, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
standard envelope constructor, which constructs its own model(s) More... | |
Iterator (ProblemDescDB &problem_db, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor which uses the ProblemDescDB but accepts a model from a higher level (meta-iterator) context, instead of constructing its own More... | |
Iterator (const String &method_string, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor for instantiations by name without the ProblemDescDB More... | |
Iterator (const Iterator &iterator) | |
copy constructor More... | |
virtual | ~Iterator () |
destructor | |
Iterator | operator= (const Iterator &iterator) |
assignment operator | |
virtual void | derived_set_communicators (ParLevLIter pl_iter) |
derived class contributions to setting the communicators associated with this Iterator instance | |
virtual void | derived_free_communicators (ParLevLIter pl_iter) |
derived class contributions to freeing the communicators associated with this Iterator instance | |
virtual void | pre_run () |
pre-run portion of run (optional); re-implemented by Iterators which can generate all Variables (parameter sets) a priori More... | |
virtual void | pre_output () |
write variables to file, following pre-run | |
virtual void | post_input () |
read tabular data for post-run mode | |
virtual void | nested_variable_mappings (const SizetArray &c_index1, const SizetArray &di_index1, const SizetArray &ds_index1, const SizetArray &dr_index1, const ShortArray &c_target2, const ShortArray &di_target2, const ShortArray &ds_target2, const ShortArray &dr_target2) |
set primaryA{CV,DIV,DRV}MapIndices, secondaryA{CV,DIV,DRV}MapTargets within derived Iterators; supports computation of higher-level sensitivities in nested contexts (e.g., derivatives of statistics w.r.t. inserted design variables) | |
virtual void | nested_response_mappings (const RealMatrix &primary_coeffs, const RealMatrix &secondary_coeffs) |
set primaryResponseCoefficients, secondaryResponseCoefficients within derived Iterators; Necessary for scalarization case in MLMC NonDMultilevelSampling to map scalarization in nested context | |
virtual void | initialize_iterator (int job_index) |
used by IteratorScheduler to set the starting data for a run | |
virtual void | pack_parameters_buffer (MPIPackBuffer &send_buffer, int job_index) |
used by IteratorScheduler to pack starting data for an iterator run | |
virtual void | unpack_parameters_buffer (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack starting data for an iterator run | |
virtual void | unpack_parameters_initialize (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack starting data and initialize an iterator run | |
virtual void | pack_results_buffer (MPIPackBuffer &send_buffer, int job_index) |
used by IteratorScheduler to pack results data from an iterator run | |
virtual void | unpack_results_buffer (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack results data from an iterator run | |
virtual void | update_local_results (int job_index) |
used by IteratorScheduler to update local results arrays | |
virtual const Variables & | variables_results () const |
return a single final iterator solution (variables) | |
virtual const Response & | response_results () const |
return a single final iterator solution (response) | |
virtual const VariablesArray & | variables_array_results () |
return multiple final iterator solutions (variables). This should only be used if returns_multiple_points() returns true. | |
virtual const ResponseArray & | response_array_results () |
return multiple final iterator solutions (response). This should only be used if returns_multiple_points() returns true. | |
virtual void | response_results_active_set (const ActiveSet &set) |
set the requested data for the final iterator response results | |
virtual const RealSymMatrix & | response_error_estimates () const |
return error estimates associated with the final iterator solution | |
virtual bool | accepts_multiple_points () const |
indicates if this iterator accepts multiple initial points. Default return is false. Override to return true if appropriate. | |
virtual bool | returns_multiple_points () const |
indicates if this iterator returns multiple final points. Default return is false. Override to return true if appropriate. | |
virtual void | initial_point (const Variables &pt) |
sets the initial point for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initial_point (const RealVector &pt) |
sets the initial point (active continuous variables) for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initial_points (const VariablesArray &pts) |
sets the multiple initial points for this iterator. This should only be used if accepts_multiple_points() returns true. | |
virtual void | update_callback_data (const RealVector &cv_initial, const RealVector &cv_lower_bnds, const RealVector &cv_upper_bnds, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lb, const RealVector &lin_ineq_ub, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_tgt, const RealVector &nln_ineq_lb, const RealVector &nln_ineq_ub, const RealVector &nln_eq_tgt) |
assign variable values and bounds and constraint coefficients and bounds for this iterator (user-functions mode for which iteratedModel is null) | |
virtual const RealMatrix & | callback_linear_ineq_coefficients () const |
return linear constraint coefficients for this iterator (user-functions mode for which iteratedModel is null) | |
virtual const RealVector & | callback_linear_ineq_lower_bounds () const |
return linear constraint lower bounds for this iterator (user-functions mode for which iteratedModel is null) | |
virtual const RealVector & | callback_linear_ineq_upper_bounds () const |
return linear constraint upper bounds for this iterator (user-functions mode for which iteratedModel is null) | |
virtual void | initialize_graphics (int iterator_server_id=1) |
initialize the 2D graphics window and the tabular graphics data More... | |
virtual void | check_sub_iterator_conflict () |
detect any conflicts due to recursive use of the same Fortran solver More... | |
virtual unsigned short | uses_method () const |
return name of any enabling iterator used by this iterator | |
virtual void | method_recourse (unsigned short method_name) |
perform a method switch, if possible, due to a detected conflict with the simultaneous use of method_name at an higher-level | |
virtual const VariablesArray & | all_variables () |
return the complete set of evaluated variables | |
virtual const RealMatrix & | all_samples () |
return the complete set of evaluated samples | |
virtual const IntResponseMap & | all_responses () const |
return the complete set of computed responses | |
virtual size_t | num_samples () const |
get the current number of samples | |
virtual void | sampling_reset (size_t min_samples, bool all_data_flag, bool stats_flag) |
reset sampling iterator to use at least min_samples | |
virtual void | sampling_reference (size_t samples_ref) |
set reference number of samples, which is a lower bound during reset | |
virtual void | sampling_increment () |
increment to next in sequence of refinement samples | |
virtual void | random_seed (int seed) |
set randomSeed, if present | |
virtual unsigned short | sampling_scheme () const |
return sampling name | |
virtual bool | compact_mode () const |
returns Analyzer::compactMode | |
virtual IntIntPair | estimate_partition_bounds () |
estimate the minimum and maximum partition sizes that can be utilized by this Iterator | |
virtual void | declare_sources () |
Declare sources to the evaluations database. | |
void | init_communicators (ParLevLIter pl_iter) |
initialize the communicators associated with this Iterator instance | |
void | set_communicators (ParLevLIter pl_iter) |
set the communicators associated with this Iterator instance | |
void | free_communicators (ParLevLIter pl_iter) |
free the communicators associated with this Iterator instance | |
void | resize_communicators (ParLevLIter pl_iter, bool reinit_comms) |
Resize the communicators. This is called from the letter's resize() | |
void | parallel_configuration_iterator (ParConfigLIter pc_iter) |
set methodPCIter | |
ParConfigLIter | parallel_configuration_iterator () const |
return methodPCIter | |
void | parallel_configuration_iterator_map (std::map< size_t, ParConfigLIter > pci_map) |
set methodPCIterMap | |
std::map< size_t, ParConfigLIter > | parallel_configuration_iterator_map () const |
return methodPCIterMap | |
void | run (ParLevLIter pl_iter) |
invoke set_communicators(pl_iter) prior to run() | |
void | run () |
orchestrate initialize/pre/core/post/finalize phases More... | |
void | assign_rep (std::shared_ptr< Iterator > iterator_rep) |
replaces existing letter with a new one More... | |
void | iterated_model (const Model &model) |
set the iteratedModel (iterators and meta-iterators using a single model instance) | |
Model & | iterated_model () |
return the iteratedModel (iterators & meta-iterators using a single model instance) | |
ProblemDescDB & | problem_description_db () const |
return the problem description database (probDescDB) | |
ParallelLibrary & | parallel_library () const |
return the parallel library (parallelLib) | |
void | method_name (unsigned short m_name) |
set the method name to an enumeration value | |
unsigned short | method_name () const |
return the method name via its native enumeration value | |
void | method_string (const String &m_str) |
set the method name by string | |
String | method_string () const |
return the method name by string | |
String | method_enum_to_string (unsigned short method_enum) const |
convert a method name enumeration value to a string | |
unsigned short | method_string_to_enum (const String &method_str) const |
convert a method name string to an enumeration value | |
String | submethod_enum_to_string (unsigned short submethod_enum) const |
convert a sub-method name enumeration value to a string | |
const String & | method_id () const |
return the method identifier (methodId) | |
int | maximum_evaluation_concurrency () const |
return the maximum evaluation concurrency supported by the iterator | |
void | maximum_evaluation_concurrency (int max_conc) |
set the maximum evaluation concurrency supported by the iterator | |
size_t | maximum_iterations () const |
return the maximum iterations for this iterator | |
void | maximum_iterations (size_t max_iter) |
set the maximum iterations for this iterator | |
void | convergence_tolerance (Real conv_tol) |
set the method convergence tolerance (convergenceTol) | |
Real | convergence_tolerance () const |
return the method convergence tolerance (convergenceTol) | |
void | output_level (short out_lev) |
set the method output level (outputLevel) | |
short | output_level () const |
return the method output level (outputLevel) | |
void | summary_output (bool summary_output_flag) |
Set summary output control; true enables evaluation/results summary. | |
size_t | num_final_solutions () const |
return the number of solutions to retain in best variables/response arrays | |
void | num_final_solutions (size_t num_final) |
set the number of solutions to retain in best variables/response arrays | |
void | active_set (const ActiveSet &set) |
set the default active set (for use with iterators that employ evaluate_parameter_sets()) | |
const ActiveSet & | active_set () const |
return the default active set (used by iterators that employ evaluate_parameter_sets()) | |
void | active_set_request_vector (const ShortArray &asv) |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
const ShortArray & | active_set_request_vector () const |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
void | active_set_request_values (short asv_val) |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
void | sub_iterator_flag (bool si_flag) |
set subIteratorFlag (and update summaryOutputFlag if needed) | |
bool | is_null () const |
function to check iteratorRep (does this envelope contain a letter?) | |
std::shared_ptr< Iterator > | iterator_rep () const |
returns iteratorRep for access to derived class member functions that are not mapped to the top Iterator level | |
virtual void | eval_tag_prefix (const String &eval_id_str) |
set the hierarchical eval ID tag prefix More... | |
std::shared_ptr< TraitsBase > | traits () const |
returns methodTraits for access to derived class member functions that are not mapped to the top TraitsBase level | |
bool | top_level () |
Return whether the iterator is the top level iterator. | |
void | top_level (bool tflag) |
Set the iterator's top level flag. | |
Public Member Functions inherited from SNLLBase | |
SNLLBase () | |
default constructor | |
SNLLBase (ProblemDescDB &problem_db) | |
standard constructor | |
~SNLLBase () | |
destructor | |
Protected Member Functions | |
void | initialize_run () |
invokes LeastSq::initialize_run(), SNLLBase::snll_initialize_run(), and performs other set-up | |
void | finalize_run () |
restores instances | |
Protected Member Functions inherited from LeastSq | |
LeastSq (std::shared_ptr< TraitsBase > traits) | |
default constructor | |
LeastSq (ProblemDescDB &problem_db, Model &model, std::shared_ptr< TraitsBase > traits) | |
standard constructor More... | |
LeastSq (unsigned short method_name, Model &model, std::shared_ptr< TraitsBase > traits) | |
alternate "on the fly" constructor | |
~LeastSq () | |
destructor | |
void | post_run (std::ostream &s) |
void | print_results (std::ostream &s, short results_state=FINAL_RESULTS) |
void | get_confidence_intervals (const Variables &native_vars, const Response &iter_resp) |
Calculate confidence intervals on estimated parameters. More... | |
Protected Member Functions inherited from Minimizer | |
Minimizer (std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
default constructor | |
Minimizer (ProblemDescDB &problem_db, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
standard constructor More... | |
Minimizer (unsigned short method_name, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for "on the fly" instantiations | |
Minimizer (unsigned short method_name, size_t num_lin_ineq, size_t num_lin_eq, size_t num_nln_ineq, size_t num_nln_eq, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for "on the fly" instantiations | |
Minimizer (Model &model, size_t max_iter, size_t max_eval, Real conv_tol, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for "on the fly" instantiations | |
~Minimizer () | |
destructor | |
void | update_from_model (const Model &model) |
set inherited data attributes based on extractions from incoming model | |
void | post_run (std::ostream &s) |
post-run portion of run (optional); verbose to print results; re-implemented by Iterators that can read all Variables/Responses and perform final analysis phase in a standalone way More... | |
const Model & | algorithm_space_model () const |
Model | original_model (unsigned short recasts_left=0) const |
Return a shallow copy of the original model this Iterator was originally passed, optionally leaving recasts_left on top of it. | |
void | data_transform_model () |
Wrap iteratedModel in a RecastModel that subtracts provided observed data from the primary response functions (variables and secondary responses are unchanged) More... | |
void | scale_model () |
Wrap iteratedModel in a RecastModel that performs variable and/or response scaling. More... | |
void | enforce_null_model () |
ensure iteratedModel is null when using function callbacks for evaluation | |
Real | objective (const RealVector &fn_vals, const BoolDeque &max_sense, const RealVector &primary_wts) const |
compute a composite objective value from one or more primary functions More... | |
Real | objective (const RealVector &fn_vals, size_t num_fns, const BoolDeque &max_sense, const RealVector &primary_wts) const |
compute a composite objective with specified number of source primary functions, instead of userPrimaryFns More... | |
void | objective_gradient (const RealVector &fn_vals, const RealMatrix &fn_grads, const BoolDeque &max_sense, const RealVector &primary_wts, RealVector &obj_grad) const |
compute the gradient of the composite objective function | |
void | objective_gradient (const RealVector &fn_vals, size_t num_fns, const RealMatrix &fn_grads, const BoolDeque &max_sense, const RealVector &primary_wts, RealVector &obj_grad) const |
compute the gradient of the composite objective function More... | |
void | objective_hessian (const RealVector &fn_vals, const RealMatrix &fn_grads, const RealSymMatrixArray &fn_hessians, const BoolDeque &max_sense, const RealVector &primary_wts, RealSymMatrix &obj_hess) const |
compute the Hessian of the composite objective function | |
void | objective_hessian (const RealVector &fn_vals, size_t num_fns, const RealMatrix &fn_grads, const RealSymMatrixArray &fn_hessians, const BoolDeque &max_sense, const RealVector &primary_wts, RealSymMatrix &obj_hess) const |
compute the Hessian of the composite objective function More... | |
void | archive_best_variables (const bool active_only=false) const |
archive best variables for the index'th final solution | |
void | archive_best_objective_functions () const |
archive the index'th set of objective functions | |
void | archive_best_constraints () const |
archive the index'th set of constraints | |
void | archive_best_residuals () const |
Archive residuals when calibration terms are used. | |
void | resize_best_vars_array (size_t newsize) |
Safely resize the best variables array to newsize taking into account the envelope-letter design pattern and any recasting. More... | |
void | resize_best_resp_array (size_t newsize) |
Safely resize the best response array to newsize taking into account the envelope-letter design pattern and any recasting. More... | |
bool | local_recast_retrieve (const Variables &vars, Response &response) const |
infers MOO/NLS solution from the solution of a single-objective optimizer and returns true if lookup succeeds More... | |
void | reshape_best (size_t num_cv, size_t num_fns) |
reshape input/output sizes within best{Variables,Response}Array | |
Protected Member Functions inherited from Iterator | |
Iterator (BaseConstructor, ProblemDescDB &problem_db, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion in the derived class constructors - Coplien, p. 139) More... | |
Iterator (NoDBBaseConstructor, unsigned short method_name, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for base iterator classes constructed on the fly More... | |
Iterator (NoDBBaseConstructor, unsigned short method_name, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate constructor for base iterator classes constructed on the fly More... | |
Iterator (NoDBBaseConstructor, Model &model, size_t max_iter, size_t max_eval, Real conv_tol, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor for instantiations without ProblemDescDB More... | |
virtual void | derived_init_communicators (ParLevLIter pl_iter) |
derived class contributions to initializing the communicators associated with this Iterator instance | |
virtual const VariablesArray & | initial_points () const |
gets the multiple initial points for this iterator. This will only be meaningful after a call to initial_points mutator. | |
StrStrSizet | run_identifier () const |
get the unique run identifier based on method name, id, and number of executions | |
void | initialize_model_graphics (Model &model, int iterator_server_id) |
helper function that encapsulates initialization operations, modular on incoming Model instance More... | |
void | export_final_surrogates (Model &data_fit_surr_model) |
export final surrogates generated, e.g., GP in EGO and friends More... | |
Protected Member Functions inherited from SNLLBase | |
void | copy_con_vals_dak_to_optpp (const RealVector &local_fn_vals, RealVector &g, size_t offset) |
convenience function for copying local_fn_vals to g; used by constraint evaluator functions | |
void | copy_con_vals_optpp_to_dak (const RealVector &g, RealVector &local_fn_vals, size_t offset) |
convenience function for copying g to local_fn_vals; used in final solution logging | |
void | copy_con_grad (const RealMatrix &local_fn_grads, RealMatrix &grad_g, size_t offset) |
convenience function for copying local_fn_grads to grad_g; used by constraint evaluator functions | |
void | copy_con_hess (const RealSymMatrixArray &local_fn_hessians, OPTPP::OptppArray< RealSymMatrix > &hess_g, size_t offset) |
convenience function for copying local_fn_hessians to hess_g; used by constraint evaluator functions | |
void | snll_pre_instantiate (bool bound_constr_flag, int num_constr) |
convenience function for setting OPT++ options prior to the method instantiation | |
void | snll_post_instantiate (int num_cv, bool vendor_num_grad_flag, const String &finite_diff_type, const RealVector &fdss, size_t max_iter, size_t max_eval, Real conv_tol, Real grad_tol, Real max_step, bool bound_constr_flag, int num_constr, short output_lev, OPTPP::OptimizeClass *the_optimizer, OPTPP::NLP0 *nlf_objective, OPTPP::FDNLF1 *fd_nlf1, OPTPP::FDNLF1 *fd_nlf1_con) |
convenience function for setting OPT++ options after the method instantiation | |
void | snll_initialize_run (OPTPP::NLP0 *nlf_objective, OPTPP::NLP *nlp_constraint, const RealVector &init_pt, bool bound_constr_flag, const RealVector &lower_bnds, const RealVector &upper_bnds, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_l_bnds, const RealVector &lin_ineq_u_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_targets, const RealVector &nln_ineq_l_bnds, const RealVector &nln_ineq_u_bnds, const RealVector &nln_eq_targets) |
convenience function for OPT++ configuration prior to the method invocation | |
void | snll_post_run (OPTPP::NLP0 *nlf_objective) |
convenience function for managing OPT++ results after method execution | |
void | snll_finalize_run (OPTPP::NLP0 *nlf_objective) |
convenience function for clearing OPT++ data after method execution | |
void | reset_base () |
reset last{FnEvalLocn,EvalMode,EvalVars} | |
Static Private Member Functions | |
static void | nlf2_evaluator_gn (int mode, int n, const RealVector &x, double &f, RealVector &grad_f, RealSymMatrix &hess_f, int &result_mode) |
objective function evaluator function which obtains values and gradients for least square terms and computes objective function value, gradient, and Hessian using the Gauss-Newton approximation. More... | |
static void | constraint1_evaluator_gn (int mode, int n, const RealVector &x, RealVector &g, RealMatrix &grad_g, int &result_mode) |
constraint evaluator function which provides constraint values and gradients to OPT++ Gauss-Newton methods. More... | |
static void | constraint2_evaluator_gn (int mode, int n, const RealVector &x, RealVector &g, RealMatrix &grad_g, OPTPP::OptppArray< RealSymMatrix > &hess_g, int &result_mode) |
constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ Gauss-Newton methods. More... | |
Private Attributes | |
SNLLLeastSq * | prevSnllLSqInstance |
pointer to the previously active object instance used for restoration in the case of iterator/model recursion | |
OPTPP::NLP0 * | nlfObjective |
objective NLF base class pointer | |
OPTPP::NLP0 * | nlfConstraint |
constraint NLF base class pointer | |
OPTPP::NLP * | nlpConstraint |
constraint NLP pointer | |
OPTPP::NLF2 * | nlf2 |
pointer to objective NLF for full Newton optimizers | |
OPTPP::NLF2 * | nlf2Con |
pointer to constraint NLF for full Newton optimizers | |
OPTPP::NLF1 * | nlf1Con |
pointer to constraint NLF for Quasi Newton optimizers | |
OPTPP::OptimizeClass * | theOptimizer |
optimizer base class pointer | |
OPTPP::OptNewton * | optnewton |
Newton optimizer pointer. | |
OPTPP::OptBCNewton * | optbcnewton |
Bound constrained Newton optimizer ptr. | |
OPTPP::OptDHNIPS * | optdhnips |
Disaggregated Hessian NIPS optimizer ptr. | |
Static Private Attributes | |
static SNLLLeastSq * | snllLSqInstance |
pointer to the active object instance used within the static evaluator functions in order to avoid the need for static data | |
Additional Inherited Members | |
Static Public Member Functions inherited from Minimizer | |
static Real | sum_squared_residuals (size_t num_pri_fns, const RealVector &residuals, const RealVector &weights) |
return weighted sum of squared residuals | |
static void | print_residuals (size_t num_terms, const RealVector &best_terms, const RealVector &weights, size_t num_best, size_t best_index, std::ostream &s) |
print num_terms residuals and misfit for final results | |
static void | print_model_resp (size_t num_pri_fns, const RealVector &best_fns, size_t num_best, size_t best_index, std::ostream &s) |
print the original user model resp in the case of data transformations | |
static void | print_best_eval_ids (const String &interface_id, const Variables &best_vars, const ActiveSet &active_set, std::ostream &s) |
print best evaluation matching vars and set, or partial matches with matching variables only. More... | |
Static Protected Member Functions inherited from Iterator | |
static void | gnewton_set_recast (const Variables &recast_vars, const ActiveSet &recast_set, ActiveSet &sub_model_set) |
conversion of request vector values for the Gauss-Newton Hessian approximation More... | |
Static Protected Member Functions inherited from SNLLBase | |
static void | init_fn (int n, RealVector &x) |
An initialization mechanism provided by OPT++ (not currently used). | |
Protected Attributes inherited from LeastSq | |
size_t | numLeastSqTerms |
number of least squares terms | |
LeastSq * | prevLSqInstance |
pointer containing previous value of leastSqInstance | |
bool | weightFlag |
flag indicating whether weighted least squares is active | |
RealVector | confBoundsLower |
lower bounds for confidence intervals on calibration parameters | |
RealVector | confBoundsUpper |
upper bounds for confidence intervals on calibration parameters | |
RealVector | bestIterPriFns |
storage for iterator best primary functions (which shouldn't be stored in bestResponseArray when there are transformations) | |
bool | retrievedIterPriFns |
whether final primary iterator space functions have been retrieved (possibly by a derived class) | |
Protected Attributes inherited from Minimizer | |
size_t | numFunctions |
number of response functions | |
size_t | numContinuousVars |
number of active continuous vars | |
size_t | numDiscreteIntVars |
number of active discrete integer vars | |
size_t | numDiscreteStringVars |
number of active discrete string vars | |
size_t | numDiscreteRealVars |
number of active discrete real vars | |
Real | constraintTol |
optimizer/least squares constraint tolerance | |
Real | bigRealBoundSize |
cutoff value for inequality constraint and continuous variable bounds | |
int | bigIntBoundSize |
cutoff value for discrete variable bounds | |
size_t | numNonlinearIneqConstraints |
number of nonlinear inequality constraints | |
size_t | numNonlinearEqConstraints |
number of nonlinear equality constraints | |
size_t | numLinearIneqConstraints |
number of linear inequality constraints | |
size_t | numLinearEqConstraints |
number of linear equality constraints | |
size_t | numNonlinearConstraints |
total number of nonlinear constraints | |
size_t | numLinearConstraints |
total number of linear constraints | |
size_t | numConstraints |
total number of linear and nonlinear constraints | |
bool | optimizationFlag |
flag for use where optimization and NLS must be distinguished | |
size_t | numUserPrimaryFns |
number of objective functions or least squares terms in the inbound model; always initialize at Minimizer, even if overridden later | |
size_t | numIterPrimaryFns |
number of objective functions or least squares terms in iterator's view, after transformations; always initialize at Minimizer, even if overridden later | |
bool | boundConstraintFlag |
convenience flag for denoting the presence of user-specified bound constraints. Used for method selection and error checking. | |
bool | speculativeFlag |
flag for speculative gradient evaluations | |
bool | calibrationDataFlag |
flag indicating whether user-supplied calibration data is active | |
ExperimentData | expData |
Container for experimental data to which to calibrate model using least squares or other formulations which minimize SSE. | |
size_t | numExperiments |
number of experiments | |
size_t | numTotalCalibTerms |
number of total calibration terms (sum over experiments of number of experimental data per experiment, including field data) | |
Model | dataTransformModel |
Shallow copy of the data transformation model, when present (cached in case further wrapped by other transformations) | |
bool | scaleFlag |
whether Iterator-level scaling is active | |
Model | scalingModel |
Shallow copy of the scaling transformation model, when present (cached in case further wrapped by other transformations) | |
Minimizer * | prevMinInstance |
pointer containing previous value of minimizerInstance | |
bool | vendorNumericalGradFlag |
convenience flag for gradient_type == numerical && method_source == vendor | |
std::shared_ptr< TPLDataTransfer > | dataTransferHandler |
Emerging helper class for handling data transfers to/from Dakota and the underlying TPL. | |
Protected Attributes inherited from Iterator | |
ProblemDescDB & | probDescDB |
class member reference to the problem description database More... | |
ParallelLibrary & | parallelLib |
class member reference to the parallel library | |
ParConfigLIter | methodPCIter |
the active ParallelConfiguration used by this Iterator instance | |
Model | iteratedModel |
the model to be iterated (for iterators and meta-iterators employing a single model instance) | |
size_t | myModelLayers |
number of Models locally (in Iterator or derived classes) wrapped around the initially passed in Model | |
unsigned short | methodName |
name of the iterator (the user's method spec) | |
Real | convergenceTol |
iteration convergence tolerance | |
size_t | maxIterations |
maximum number of iterations for the method | |
size_t | maxFunctionEvals |
maximum number of fn evaluations for the method | |
int | maxEvalConcurrency |
maximum number of concurrent model evaluations More... | |
ActiveSet | activeSet |
the response data requirements on each function evaluation | |
size_t | numFinalSolutions |
number of solutions to retain in best variables/response arrays | |
VariablesArray | bestVariablesArray |
collection of N best solution variables found during the study; always in context of Model originally passed to the Iterator (any in-flight Recasts must be undone) | |
ResponseArray | bestResponseArray |
collection of N best solution responses found during the study; always in context of Model originally passed to the Iterator (any in-flight Recasts must be undone) | |
bool | subIteratorFlag |
flag indicating if this Iterator is a sub-iterator (NestedModel::subIterator or DataFitSurrModel::daceIterator) | |
short | outputLevel |
output verbosity level: {SILENT,QUIET,NORMAL,VERBOSE,DEBUG}_OUTPUT | |
bool | summaryOutputFlag |
flag for summary output (evaluation stats, final results); default true, but false for on-the-fly (helper) iterators and sub-iterator use cases | |
ResultsManager & | resultsDB |
reference to the global iterator results database | |
EvaluationStore & | evaluationsDB |
reference to the global evaluation database | |
EvaluationsDBState | evaluationsDBState |
State of evaluations DB for this iterator. | |
ResultsNames | resultsNames |
valid names for iterator results | |
std::shared_ptr< TraitsBase > | methodTraits |
pointer that retains shared ownership of a TraitsBase object, or child thereof | |
bool | topLevel |
Whether this is the top level iterator. | |
bool | exportSurrogate = false |
whether to export final surrogates | |
String | surrExportPrefix |
base filename for exported surrogates | |
unsigned short | surrExportFormat = NO_MODEL_FORMAT |
(bitwise) format(s) to export | |
Protected Attributes inherited from SNLLBase | |
String | searchMethod |
value_based_line_search, gradient_based_line_search, trust_region, or tr_pds | |
OPTPP::SearchStrategy | searchStrat |
enum: LineSearch, TrustRegion, or TrustPDS | |
OPTPP::MeritFcn | meritFn |
enum: NormFmu, ArgaezTapia, or VanShanno | |
Real | gradientTol |
value from gradient_tolerance specification | |
Real | maxStep |
value from max_step specification | |
Real | stepLenToBndry |
value from steplength_to_boundary specification | |
Real | centeringParam |
value from centering_parameter specification | |
bool | constantASVFlag |
flags a user selection of active_set_vector == constant. By mapping this into mode override, reliance on duplicate detection can be avoided. | |
Static Protected Attributes inherited from LeastSq | |
static LeastSq * | leastSqInstance |
pointer to LeastSq instance used in static member functions | |
Static Protected Attributes inherited from Minimizer | |
static Minimizer * | minimizerInstance |
pointer to Minimizer used in static member functions | |
Static Protected Attributes inherited from SNLLBase | |
static Minimizer * | optLSqInstance |
pointer to the active base class object instance used within the static evaluator functions in order to avoid the need for static data | |
static bool | modeOverrideFlag |
flags OPT++ mode override (for combining value, gradient, and Hessian requests) | |
static EvalType | lastFnEvalLocn |
an enum used to track whether an nlf evaluator or a constraint evaluator was the last location of a function evaluation | |
static int | lastEvalMode |
copy of mode from constraint evaluators | |
static RealVector | lastEvalVars |
copy of variables from constraint evaluators | |
Wrapper class for the OPT++ optimization library.
The SNLLLeastSq class provides a wrapper for OPT++, a C++ optimization library of nonlinear programming and pattern search techniques from the Computational Sciences and Mathematics Research (CSMR) department at Sandia's Livermore CA site. It uses a function pointer approach for which passed functions must be either global functions or static member functions. Any attribute used within static member functions must be either local to that function, a static member, or accessed by static pointer.
The user input mappings are as follows: max_iterations
, max_function_evaluations
, convergence_tolerance
, max_step
, gradient_tolerance
, search_method
, and search_scheme_size
are set using OPT++'s setMaxIter(), setMaxFeval(), setFcnTol(), setMaxStep(), setGradTol(), setSearchStrategy(), and setSSS() member functions, respectively; output
verbosity is used to toggle OPT++'s debug mode using the setDebug() member function. Internal to OPT++, there are 3 search strategies, while the DAKOTA search_method
specification supports 4 (value_based_line_search
, gradient_based_line_search
, trust_region
, or tr_pds
). The difference stems from the "is_expensive" flag in OPT++. If the search strategy is LineSearch and "is_expensive" is turned on, then the value_based_line_search
is used. Otherwise (the "is_expensive" default is off), the algorithm will use the gradient_based_line_search
. Refer to [Meza, J.C., 1994] and to the OPT++ source in the Dakota/packages/OPTPP directory for information on OPT++ class member functions.
|
staticprivate |
objective function evaluator function which obtains values and gradients for least square terms and computes objective function value, gradient, and Hessian using the Gauss-Newton approximation.
This nlf2 evaluator function is used for the Gauss-Newton method in order to exploit the special structure of the nonlinear least squares problem. Here, fx = sum (T_i - Tbar_i)^2 and Response is made up of residual functions and their gradients along with any nonlinear constraints. The objective function and its gradient vector and Hessian matrix are computed directly from the residual functions and their derivatives (which are returned from the Response object).
References Dakota::abort_handler(), Iterator::activeSet, Model::continuous_variables(), Model::current_response(), Model::evaluate(), Response::function_gradients(), Response::function_values(), Iterator::iteratedModel, SNLLBase::lastEvalMode, SNLLBase::lastEvalVars, SNLLBase::lastFnEvalLocn, Minimizer::numFunctions, LeastSq::numLeastSqTerms, Minimizer::numNonlinearConstraints, Iterator::outputLevel, ActiveSet::request_vector(), SNLLLeastSq::snllLSqInstance, and Dakota::write_precision.
Referenced by SNLLLeastSq::SNLLLeastSq().
|
staticprivate |
constraint evaluator function which provides constraint values and gradients to OPT++ Gauss-Newton methods.
While it does not employ the Gauss-Newton approximation, it is distinct from constraint1_evaluator() due to its need to anticipate the required modes for the least squares terms. This constraint evaluator function is used with diaggregated Hessian NIPS and is currently active.
References Dakota::abort_handler(), Iterator::activeSet, Model::continuous_variables(), SNLLBase::copy_con_grad(), SNLLBase::copy_con_vals_dak_to_optpp(), Model::current_response(), Model::evaluate(), Response::function_gradients(), Response::function_values(), Iterator::iteratedModel, SNLLBase::lastEvalMode, SNLLBase::lastEvalVars, SNLLBase::lastFnEvalLocn, Minimizer::numFunctions, LeastSq::numLeastSqTerms, Iterator::outputLevel, ActiveSet::request_vector(), and SNLLLeastSq::snllLSqInstance.
Referenced by SNLLLeastSq::SNLLLeastSq().
|
staticprivate |
constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ Gauss-Newton methods.
While it does not employ the Gauss-Newton approximation, it is distinct from constraint2_evaluator() due to its need to anticipate the required modes for the least squares terms. This constraint evaluator function is used with full Newton NIPS and is currently inactive.
References Dakota::abort_handler(), Iterator::activeSet, Model::continuous_variables(), SNLLBase::copy_con_grad(), SNLLBase::copy_con_hess(), SNLLBase::copy_con_vals_dak_to_optpp(), Model::current_response(), Model::evaluate(), Response::function_gradients(), Response::function_hessians(), Response::function_values(), Iterator::iteratedModel, SNLLBase::lastEvalMode, SNLLBase::lastEvalVars, SNLLBase::lastFnEvalLocn, SNLLBase::modeOverrideFlag, Minimizer::numFunctions, LeastSq::numLeastSqTerms, Iterator::outputLevel, ActiveSet::request_vector(), and SNLLLeastSq::snllLSqInstance.