dakota
  • Getting Started
  • Using Dakota
    • About Dakota
    • Dakota Beginner’s Tutorial
    • Examples
    • Coupling Dakota to a Simulation
    • Dakota Input File
    • Running Dakota
    • Dakota Output
    • Study Types
    • Topics
    • Advanced Topics
    • Dakota Theory
    • Keyword Reference
      • environment
      • method
        • id_method
        • output
        • final_solutions
        • hybrid
        • multi_start
        • pareto_set
        • branch_and_bound
        • surrogate_based_local
        • surrogate_based_global
        • dot_frcg
        • dot_mmfd
        • dot_bfgs
        • dot_slp
        • dot_sqp
        • conmin_frcg
        • conmin_mfd
        • dl_solver
        • npsol_sqp
        • nlssol_sqp
        • nlpql_sqp
        • optpp_cg
        • optpp_q_newton
        • optpp_fd_newton
        • optpp_g_newton
        • optpp_newton
          • search_method
            • value_based_line_search
            • gradient_based_line_search
            • trust_region
            • tr_pds
          • merit_function
          • steplength_to_boundary
          • centering_parameter
          • max_step
          • gradient_tolerance
          • max_iterations
          • convergence_tolerance
          • speculative
          • max_function_evaluations
          • scaling
          • model_pointer
        • optpp_pds
        • demo_tpl
        • rol
        • asynch_pattern_search
        • mesh_adaptive_search
        • nowpac
        • snowpac
        • moga
        • soga
        • coliny_pattern_search
        • coliny_solis_wets
        • coliny_cobyla
        • coliny_direct
        • coliny_ea
        • coliny_beta
        • nl2sol
        • nonlinear_cg
        • ncsu_direct
        • genie_opt_darts
        • genie_direct
        • efficient_global
        • surrogate_based_uq
        • function_train
        • multifidelity_function_train
        • multilevel_function_train
        • polynomial_chaos
        • multifidelity_polynomial_chaos
        • multilevel_polynomial_chaos
        • stoch_collocation
        • multifidelity_stoch_collocation
        • sampling
        • multilevel_sampling
        • multifidelity_sampling
        • multilevel_multifidelity_sampling
        • approximate_control_variate
        • multilevel_blue
        • importance_sampling
        • gpais
        • adaptive_sampling
        • pof_darts
        • rkd_darts
        • global_evidence
        • global_interval_est
        • bayes_calibration
        • dace
        • fsu_cvt
        • psuade_moat
        • local_evidence
        • local_interval_est
        • local_reliability
        • global_reliability
        • fsu_quasi_mc
        • vector_parameter_study
        • list_parameter_study
        • centered_parameter_study
        • multidim_parameter_study
        • richardson_extrap
      • model
      • variables
      • interface
      • responses
  • Using Dakota GUI
  • Using External Tools
  • Compiling Dakota
  • Developing Dakota
  • Miscellaneous
dakota

Sandia National Laboratories

  • Search Sandia.gov
  • All Sandia Websites
  • Using Dakota
  • Keyword Reference
  • method
  • optpp_newton
  • search_method
  • gradient_based_line_search
  • View page source

gradient_based_line_search

Set the search method to use the gradient

Specification

  • Alias: None

  • Arguments: None

Description

The search_method control is defined for all Newton-based optimizers and is used to select between trust_region, gradient_based_line_search, and value_based_line_search methods. The gradient_based_line_search option uses the line search method proposed by [MT94]. This option satisfies sufficient decrease and curvature conditions; whereas, value_base_line_search only satisfies the sufficient decrease condition. At each line search iteration, the gradient_based_line_search method computes the function and gradient at the trial point. Consequently, given expensive function evaluations, the value_based_line_search method is preferred to the gradient_based_line_search method. Each of these Newton methods additionally supports the tr_pds selection for unconstrained problems. This option performs a robust trust region search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-constrained problems, and use of a trust_region search method is the default for unconstrained problems.

Previous Next

Exceptional service in the national interest

© 2023 National Technology and Engineering Solutions of Sandia, LLC. | Questions & Comments | Privacy & Security

U.S. Department of Energy National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.