.. _variables-hypergeometric_uncertain: """""""""""""""""""""""" hypergeometric_uncertain """""""""""""""""""""""" Aleatory uncertain discrete variable - hypergeometric **Topics** discrete_variables, aleatory_uncertain_variables .. toctree:: :hidden: :maxdepth: 1 variables-hypergeometric_uncertain-total_population variables-hypergeometric_uncertain-selected_population variables-hypergeometric_uncertain-num_drawn variables-hypergeometric_uncertain-initial_point variables-hypergeometric_uncertain-descriptors **Specification** - *Alias:* None - *Arguments:* INTEGER - *Default:* no hypergeometric uncertain variables **Child Keywords:** +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+=========================+===============================================+ | Required | `total_population`__ | Parameter for the hypergeometric probability | | | | distribution describing the size of the total | | | | population | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Required | `selected_population`__ | Distribution parameter for the hypergeometric | | | | distribution describing the size of the | | | | population subset of interest | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Required | `num_drawn`__ | Distribution parameter for the hypergeometric | | | | distribution describing the number of draws | | | | from a combined population | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `initial_point`__ | Initial values for variables | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `descriptors`__ | Labels for the variables | +----------------------------------------------+-------------------------+-----------------------------------------------+ .. __: variables-hypergeometric_uncertain-total_population.html __ variables-hypergeometric_uncertain-selected_population.html __ variables-hypergeometric_uncertain-num_drawn.html __ variables-hypergeometric_uncertain-initial_point.html __ variables-hypergeometric_uncertain-descriptors.html **Description** The hypergeometric probability density is used when sampling without replacement from a total population of elements where - The resulting element of each sample can be separated into one of two non-overlapping sets - The probability of success changes with each sample. The density function for the hypergeometric distribution is given by: .. math:: f(x) = \frac{\left(\begin{array}{c}m\\x\end{array}\right)\left(\begin{array}{c}{N-m}\\{n-x}\end{array}\right)}{\left(\begin{array}{c}N\\n\end{array}\right)}, where the three distribution parameters are: - :math:`N`: the total population - :math:`m`: the number of items in the selected population (e.g. the number of white balls in the full urn of :math:`N` items) - :math:`n` the size of the sample drawn (e.g. number of balls drawn) In addition, - :math:`x`, the abscissa of the density function, indicates the number of successes (e.g. drawing a white ball) - :math:`\left(\begin{array}{c}a\\b\end{array}\right)` indicates a binomial coefficient ("a choose b") **Theory** The hypergeometric is often described using an urn model. For example, say we have a total population containing :math:`N` balls, and we know that :math:`m` of the balls are white and the remaining balls are green. If we draw :math:`n` balls from the urn without replacement, the hypergeometric distribution describes the probability of drawing :math:`x` white balls.