.. _model-active_subspace-truncation_method-energy: """""" energy """""" Truncate the subspace based on eigenvalue energy .. toctree:: :hidden: :maxdepth: 1 model-active_subspace-truncation_method-energy-truncation_tolerance **Specification** - *Alias:* None - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+--------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+==========================+===============================================+ | Optional | `truncation_tolerance`__ | Specify the maximum percentage (as a decimal) | | | | of the eigenvalue energy not captured by the | | | | active subspace representation. | +----------------------------------------------+--------------------------+-----------------------------------------------+ .. __: model-active_subspace-truncation_method-energy-truncation_tolerance.html **Description** Uses a criterion based on the derivative matrix eigenvalue energy. *Usage Tips* This subspace truncation method may work best when working with non-normally distributed uncertain variables. If this automated diagnostic does not yield desirable results, consider using the explicit :dakkw:`model-active_subspace-dimension` truncation option or one of the other truncation methods. **Theory** Using the eigenvalue energy truncation metric, the subspace size is determined using the following equation: .. math:: n = \inf \left\lbrace d \in \mathbf{Z} \quad\middle|\quad 1 \le d \le N \quad \wedge\quad 1 - \frac{\sum_{i = 1}^{d} \lambda_i}{\sum_{i = 1}^{N} \lambda_i} \,<\, \epsilon \right\rbrace where :math:`\epsilon` is the :dakkw:`model-active_subspace-truncation_method-energy-truncation_tolerance`, :math:`n` is the estimated subspace size, :math:`N` is the size of the full space, and :math:`\lambda_i` are the eigenvalues of the derivative matrix.