.. _method-polynomial_chaos-refinement_metric: """"""""""""""""" refinement_metric """"""""""""""""" Metric used for guiding adaptive refinement during UQ. .. toctree:: :hidden: :maxdepth: 1 method-polynomial_chaos-refinement_metric-level_mappings method-polynomial_chaos-refinement_metric-covariance **Specification** - *Alias:* None - *Arguments:* None - *Default:* requested statistics **Child Keywords:** +-------------------------+--------------------+--------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+====================+===============================================+ | Required (Choose One) | type of refinement | `level_mappings`__ | Utilize the level mappings metric for guiding | | | metric | | adaptive refinement during UQ. | | | +--------------------+-----------------------------------------------+ | | | `covariance`__ | Utilize the response covariance metric for | | | | | guiding adaptive refinement during UQ. | +-------------------------+--------------------+--------------------+-----------------------------------------------+ .. __: method-polynomial_chaos-refinement_metric-level_mappings.html __ method-polynomial_chaos-refinement_metric-covariance.html **Description** The refinement metric for each (greedy) refinement candidate defaults to the change induced by the candidate across the set of level mappings (L2 norm in the results for response levels, probability levels, reliability levels, and generalized reliability levels) whenever level mappings are specified. This supports goal orientation during the refinement process. When no level mappings are specified, the default metric is the norm of the change in the response covariance matrix for the QoI targets. This specification option allows the user to override the default, in particular activating the response covariance option despite the presence of level mappings (see example below). **Examples** .. code-block:: method, multifidelity_polynomial_chaos p_refinement uniform expansion_order_sequence = 0 cross_validation collocation_ratio = 0.75 seed = 8674132 allocation_control greedy refinement_metric covariance # override default of level mappings convergence_tolerance = 1.e-6 samples_on_emulator = 250000 num_response_levels = 41 41 41 response_levels = -100:5:100 -100:5:100 -100:5:100