.. _method-nl2sol-covariance: """""""""" covariance """""""""" Determine how the final covariance matrix is computed .. toctree:: :hidden: :maxdepth: 1 **Specification** - *Alias:* None - *Arguments:* INTEGER - *Default:* 0 (no covariance) **Description** ``covariance`` (NL2SOL's ``covreq``) specifies whether and how NL2SOL computes a final covariance matrix. The desired covariance approximation: - 0 = default = none - 1 or -1 ==> :math:`\sigma^2 H^{-1} J^T J H^{-1}` - 2 or -2 ==> :math:`\sigma^2 H^{-1}` - 3 or -3 ==> :math:`\sigma^2 (J^T J)^{-1}` - Negative values ==> estimate the final Hessian H by finite differences of function values only (using ``fd_hessian_step_size``) - Positive values ==> differences of gradients (using ``fd_hessian_step_size``)