.. _method-multi_start:

"""""""""""
multi_start
"""""""""""


Multi-Start Optimization Method


.. toctree::
   :hidden:
   :maxdepth: 1

   method-multi_start-method_name
   method-multi_start-method_pointer
   method-multi_start-random_starts
   method-multi_start-starting_points
   method-multi_start-iterator_servers
   method-multi_start-iterator_scheduling
   method-multi_start-processors_per_iterator


**Specification**

- *Alias:* None

- *Arguments:* None


**Child Keywords:**

+-------------------------+--------------------+-----------------------------+-----------------------------------------------+
| Required/Optional       | Description of     | Dakota Keyword              | Dakota Keyword Description                    |
|                         | Group              |                             |                                               |
+=========================+====================+=============================+===============================================+
| Required (Choose One)   | Sub-method         | `method_name`__             | Specify sub-method by name                    |
|                         | Selection          +-----------------------------+-----------------------------------------------+
|                         |                    | `method_pointer`__          | Pointer to sub-method to run from each        |
|                         |                    |                             | starting point                                |
+-------------------------+--------------------+-----------------------------+-----------------------------------------------+
| Optional                                     | `random_starts`__           | Number of random starting points              |
+----------------------------------------------+-----------------------------+-----------------------------------------------+
| Optional                                     | `starting_points`__         | List of user-specified starting points        |
+----------------------------------------------+-----------------------------+-----------------------------------------------+
| Optional                                     | `iterator_servers`__        | Specify the number of iterator servers when   |
|                                              |                             | Dakota is run in parallel                     |
+----------------------------------------------+-----------------------------+-----------------------------------------------+
| Optional                                     | `iterator_scheduling`__     | Specify the scheduling of concurrent          |
|                                              |                             | iterators when Dakota is run in parallel      |
+----------------------------------------------+-----------------------------+-----------------------------------------------+
| Optional                                     | `processors_per_iterator`__ | Specify the number of processors per iterator |
|                                              |                             | server when Dakota is run in parallel         |
+----------------------------------------------+-----------------------------+-----------------------------------------------+

.. __: method-multi_start-method_name.html
__ method-multi_start-method_pointer.html
__ method-multi_start-random_starts.html
__ method-multi_start-starting_points.html
__ method-multi_start-iterator_servers.html
__ method-multi_start-iterator_scheduling.html
__ method-multi_start-processors_per_iterator.html



**Description**


In the multi-start iteration method ( ``multi_start``), a series of
iterator runs are performed for different values of parameters in the
model. A common use is for multi-start optimization (i.e., different
local optimization runs from different starting points for the design
variables), but the concept and the code are more general.
Multi-start iteration is implemented within the MetaIterator branch of
the Iterator hierarchy within the ConcurrentMetaIterator class.
Additional information on the multi-start algorithm is available :ref:`here <adv_meth:multistart>`.

The ``multi_start`` meta-iterator must specify a sub-iterator using
either a ``method_pointer`` or a ``method_name`` plus optional
``model_pointer``. This iterator is responsible for completing a series
of iterative analyses from a set of different starting points. These
starting points can be specified as follows: (1) using
``random_starts``, for which the specified number of starting points are
selected randomly within the variable bounds, (2) using
``starting_points``, in which the starting values are provided in a list,
or (3) using both ``random_starts`` and ``starting_points``, for which
the combined set of points will be used. In aggregate, at least one
starting point must be specified. The most common example of a
multi-start algorithm is multi-start optimization, in which a series
of optimizations are performed from different starting values for the
design variables. This can be an effective approach for problems with
multiple minima.

*Expected HDF5 Output*

If Dakota was built with HDF5 support and run with the
:dakkw:`environment-results_output-hdf5` keyword, this method
writes the starting points for each sub-iterator it runs, as well
as the best parameters and responses returned by each sub-iterator.
See the :ref:`hdf5_results-ms_pareto` documentation for details.