.. _method-moga: """" moga """" Multi-objective Genetic Algorithm (a.k.a Evolutionary Algorithm) **Topics** package_jega .. toctree:: :hidden: :maxdepth: 1 method-moga-fitness_type method-moga-replacement_type method-moga-niching_type method-moga-convergence_type method-moga-postprocessor_type method-moga-max_iterations method-moga-max_function_evaluations method-moga-scaling method-moga-population_size method-moga-log_file method-moga-print_each_pop method-moga-initialization_type method-moga-crossover_type method-moga-mutation_type method-moga-seed method-moga-convergence_tolerance method-moga-model_pointer **Specification** - *Alias:* None - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+==============================+===============================================+ | Optional | `fitness_type`__ | Select the fitness type for JEGA methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `replacement_type`__ | Select a replacement type for JEGA methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `niching_type`__ | Specify the type of niching pressure | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `convergence_type`__ | Select the convergence type for JEGA methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `postprocessor_type`__ | Post process the final solution from ``moga`` | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `max_iterations`__ | Number of iterations allowed for optimizers | | | | and adaptive UQ methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `max_function_evaluations`__ | Number of function evaluations allowed for | | | | optimizers | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `scaling`__ | Turn on scaling for variables, responses, and | | | | constraints | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `population_size`__ | Set the initial population size in JEGA | | | | methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `log_file`__ | Specify the name of a log file | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `print_each_pop`__ | Print every population to a population file | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `initialization_type`__ | Specify how to initialize the population | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `crossover_type`__ | Select a crossover type for JEGA methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `mutation_type`__ | Select a mutation type for JEGA methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `seed`__ | Seed of the random number generator | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `convergence_tolerance`__ | Stopping criterion based on objective | | | | function or statistics convergence | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `model_pointer`__ | Identifier for model block to be used by a | | | | method | +----------------------------------------------+------------------------------+-----------------------------------------------+ .. __: method-moga-fitness_type.html __ method-moga-replacement_type.html __ method-moga-niching_type.html __ method-moga-convergence_type.html __ method-moga-postprocessor_type.html __ method-moga-max_iterations.html __ method-moga-max_function_evaluations.html __ method-moga-scaling.html __ method-moga-population_size.html __ method-moga-log_file.html __ method-moga-print_each_pop.html __ method-moga-initialization_type.html __ method-moga-crossover_type.html __ method-moga-mutation_type.html __ method-moga-seed.html __ method-moga-convergence_tolerance.html __ method-moga-model_pointer.html **Description** ``moga`` stands for Multi-objective Genetic Algorithm, which is a global optimization method that does Pareto optimization for multiple objectives. It supports general constraints and a mixture of real and discrete variables. *Constraints* ``moga`` can utilize linear constraints using the keywords: * :dakkw:`variables-linear_inequality_constraint_matrix` * :dakkw:`variables-linear_inequality_lower_bounds` * :dakkw:`variables-linear_inequality_upper_bounds` * :dakkw:`variables-linear_inequality_scale_types` * :dakkw:`variables-linear_inequality_scales` * :dakkw:`variables-linear_equality_constraint_matrix` * :dakkw:`variables-linear_equality_targets` * :dakkw:`variables-linear_equality_scale_types` * :dakkw:`variables-linear_equality_scales` *Configuration* The genetic algorithm configurations are: - fitness - replacement - niching - convergence - postprocessor - initialization - crossover - mutation - population size The steps followed by the algorithm are listed below. The configurations will effect how the algorithm completes each step. *Stopping Criteria* The ``moga`` method respects the ``max_iterations`` and ``max_function_evaluations`` method independent controls to provide integer limits for the maximum number of generations and function evaluations, respectively. The algorithm also stops when convergence is reached. This involves repeated assessment of the algorithm's progress in solving the problem, until some criterion is met. The specification for convergence in a moga can either be ``metric_tracker`` or can be omitted all together. If omitted, no convergence algorithm will be used and the algorithm will rely on stopping criteria only. *Expected Outputs* The ``moga`` method respects the :dakkw:`method-output` method independent control to vary the amount of information presented to the user during execution. The final results are written to the Dakota tabular output. Additional information is also available - see the ``log_file`` and ``print_each_pop`` keywords. Note that moga and SOGA create additional output files during execution. "finaldata.dat" is a file that holds the final set of Pareto optimal solutions after any post-processing is complete. "discards.dat" holds solutions that were discarded from the population during the course of evolution. It can often be useful to plot objective function values from these files to visually see the Pareto front and ensure that finaldata.dat solutions dominate discards.dat solutions. The solutions are written to these output files in the format "Input1...InputN..Output1...OutputM". *Expected HDF5 Output* If Dakota was built with HDF5 support and run with the :dakkw:`environment-results_output-hdf5` keyword, this method writes the following results to HDF5: - :ref:`hdf5_results-best_params` - :ref:`hdf5_results-best_obj_fncs` (when :dakkw:`responses-objective_functions`) are specified) - :ref:`hdf5_results-best_constraints` - :ref:`hdf5_results-calibration` (when :dakkw:`responses-calibration_terms` are specified) *Important Notes* The pool of potential members is the current population and the current set of offspring. Choice of fitness assessors is strongly related to the type of replacement algorithm being used and can have a profound effect on the solutions selected for the next generation. If using the fitness types ``layer_rank`` or ``domination_count``, it is strongly recommended that you use the ``replacement_type`` ``below_limit`` (although the roulette wheel selectors can also be used). The functionality of the domination_count selector of JEGA v1.0 can now be achieved using the ``domination_count`` fitness type and ``below_limit`` replacement type. **Theory** The basic steps of the ``moga`` algorithm are as follows: 1. Initialize the population 2. Evaluate the population (calculate the values of the objective function and constraints for each population member) 3. Loop until converged, or stopping criteria reached 1. Perform crossover 2. Perform mutation 3. Evaluate the new population 4. Assess the fitness of each member in the population 5. Replace the population with members selected to continue in the next generation 6. Apply niche pressure to the population 7. Test for convergence 8. Perform post processing If moga is used in a hybrid optimization method (which requires one optimal solution from each individual optimization method to be passed to the subsequent optimization method as its starting point), the solution in the Pareto set closest to the "utopia" point is given as the best solution. This solution is also reported in the Dakota output. This "best" solution in the Pareto set has minimum distance from the utopia point. The utopia point is defined as the point of extreme (best) values for each objective function. For example, if the Pareto front is bounded by (1,100) and (90,2), then (1,2) is the utopia point. There will be a point in the Pareto set that has minimum L2-norm distance to this point, for example (10,10) may be such a point. If moga is used in a method which may require passing multiple solutions to the next level (such as the ``surrogate_based_global`` method or ``hybrid`` methods), the ``orthogonal_distance`` postprocessor type may be used to specify the distances between each solution value to winnow down the solutions in the full Pareto front to a subset which will be passed to the next iteration.