.. _method-fsu_quasi_mc:

""""""""""""
fsu_quasi_mc
""""""""""""


Design of Computer Experiments - Quasi-Monte Carlo sampling



**Topics**


package_fsudace, design_and_analysis_of_computer_experiments


.. toctree::
   :hidden:
   :maxdepth: 1

   method-fsu_quasi_mc-halton
   method-fsu_quasi_mc-hammersley
   method-fsu_quasi_mc-latinize
   method-fsu_quasi_mc-quality_metrics
   method-fsu_quasi_mc-variance_based_decomp
   method-fsu_quasi_mc-samples
   method-fsu_quasi_mc-fixed_sequence
   method-fsu_quasi_mc-sequence_start
   method-fsu_quasi_mc-sequence_leap
   method-fsu_quasi_mc-prime_base
   method-fsu_quasi_mc-max_iterations
   method-fsu_quasi_mc-model_pointer


**Specification**

- *Alias:* None

- *Arguments:* None


**Child Keywords:**

+-------------------------+--------------------+---------------------------+-----------------------------------------------+
| Required/Optional       | Description of     | Dakota Keyword            | Dakota Keyword Description                    |
|                         | Group              |                           |                                               |
+=========================+====================+===========================+===============================================+
| Required (Choose One)   | Sequence Type      | `halton`__                | Generate samples from a Halton sequence       |
|                         |                    +---------------------------+-----------------------------------------------+
|                         |                    | `hammersley`__            | Use Hammersley sequences                      |
+-------------------------+--------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `latinize`__              | Adjust samples to improve the discrepancy of  |
|                                              |                           | the marginal distributions                    |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `quality_metrics`__       | Calculate metrics to assess the quality of    |
|                                              |                           | quasi-Monte Carlo samples                     |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `variance_based_decomp`__ | Activates global sensitivity analysis based   |
|                                              |                           | on decomposition of response variance into    |
|                                              |                           | contributions from variables                  |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `samples`__               | Number of samples for sampling-based methods  |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `fixed_sequence`__        | Reuse the same sequence and samples for       |
|                                              |                           | multiple sampling sets                        |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `sequence_start`__        | Choose where to start sampling the sequence   |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `sequence_leap`__         | Specify how often the sequence is sampled     |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `prime_base`__            | The prime numbers used to generate the        |
|                                              |                           | sequence                                      |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `max_iterations`__        | Number of iterations allowed for optimizers   |
|                                              |                           | and adaptive UQ methods                       |
+----------------------------------------------+---------------------------+-----------------------------------------------+
| Optional                                     | `model_pointer`__         | Identifier for model block to be used by a    |
|                                              |                           | method                                        |
+----------------------------------------------+---------------------------+-----------------------------------------------+

.. __: method-fsu_quasi_mc-halton.html
__ method-fsu_quasi_mc-hammersley.html
__ method-fsu_quasi_mc-latinize.html
__ method-fsu_quasi_mc-quality_metrics.html
__ method-fsu_quasi_mc-variance_based_decomp.html
__ method-fsu_quasi_mc-samples.html
__ method-fsu_quasi_mc-fixed_sequence.html
__ method-fsu_quasi_mc-sequence_start.html
__ method-fsu_quasi_mc-sequence_leap.html
__ method-fsu_quasi_mc-prime_base.html
__ method-fsu_quasi_mc-max_iterations.html
__ method-fsu_quasi_mc-model_pointer.html



**Description**


Quasi-Monte Carlo methods
produce low discrepancy sequences, especially if one is interested
in the uniformity of projections of the point sets onto
lower dimensional faces of the hypercube (usually 1-D: how well do
the marginal distributions approximate a uniform?)

This method generates sets of uniform random variables on the
interval [0,1]. If the user specifies lower and upper bounds for a
variable, the [0,1] samples are mapped to the [lower, upper] interval.

The user must first choose the sequence type:

- ``halton`` or
- ``hammersley``

Then three keywords are used to define the sequence and how it is sampled:

- ``prime_base``
- ``sequence_start``
- ``sequence_leap``

Each of these has defaults, so specification is optional.



**Theory**


The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic
sequences determined by a set of prime bases.
Generally, we recommend that the user leave the default
setting for the bases, which are the lowest primes.
Thus, if one wants to generate a sample set for 3 random variables,
the default bases used are 2, 3, and 5 in the Halton sequence.
To give an example of how these sequences look, the Halton sequence
in base 2 starts with points 0.5, 0.25, 0.75, 0.125, 0.625, etc.
The first few points in a Halton base 3 sequence are
0.33333, 0.66667, 0.11111, 0.44444, 0.77777, etc. Notice that the Halton
sequence tends to alternate back and forth, generating a point closer to zero
then a point closer to one. An individual sequence is based on a radix
inverse function defined on a prime base. The prime base determines
how quickly the [0,1] interval is filled in. Generally, the lowest
primes are recommended.

The Hammersley sequence is the same as the Halton sequence, except the values
for the first random variable are equal to 1/N, where N is the number of
samples. Thus, if one wants to generate a sample set of 100 samples for 3
random variables, the first random variable has values 1/100, 2/100, 3/100,
etc. and the second and third variables are generated according to a Halton
sequence with bases 2 and 3, respectively.

For more information about
these sequences, see :cite:p:`Halton1960`,
:cite:p:`Halton1964`, and
:cite:p:`Kocis1997`.