.. _method-bayes_calibration-queso-pre_solve: """"""""" pre_solve """"""""" Perform deterministic optimization for MAP before Bayesian calibration .. toctree:: :hidden: :maxdepth: 1 method-bayes_calibration-queso-pre_solve-sqp method-bayes_calibration-queso-pre_solve-nip method-bayes_calibration-queso-pre_solve-none **Specification** - *Alias:* None - *Arguments:* None - *Default:* nip pre-solve for emulators **Child Keywords:** +-------------------------+--------------------+--------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+====================+===============================================+ | Required (Choose One) | Pre-solve | `sqp`__ | Use a sequential quadratic programming method | | | Optimizer | | for solving an optimization sub-problem | | | +--------------------+-----------------------------------------------+ | | | `nip`__ | Use a nonlinear interior point method for | | | | | solving an optimization sub-problem | | | +--------------------+-----------------------------------------------+ | | | `none`__ | Deactivates MAP pre-solve prior to initiating | | | | | the MCMC process. | +-------------------------+--------------------+--------------------+-----------------------------------------------+ .. __: method-bayes_calibration-queso-pre_solve-sqp.html __ method-bayes_calibration-queso-pre_solve-nip.html __ method-bayes_calibration-queso-pre_solve-none.html **Description** When specified, Dakota will perform a deterministic derivative-based optimization to maximize the log posterior (minimize the negative log posterior = misfit - log_prior + constant normalization factors). The Markov chain in Bayesian calibration will subsequently be started at the best point found in the optimization (the MAP point), which can eliminate the need for "burn in" of the chain in which some initial portion of the chain is discarded. **Examples** .. code-block:: method bayes_calibration queso samples = 2000 seed = 348 delayed_rejection emulator pce sparse_grid_level = 2 pre_solve nip # default for emulators