.. _method-approximate_control_variate: """"""""""""""""""""""""""" approximate_control_variate """"""""""""""""""""""""""" Approximate control variate (ACV) sampling methods for UQ .. toctree:: :hidden: :maxdepth: 1 method-approximate_control_variate-acv_independent_sampling method-approximate_control_variate-acv_multifidelity method-approximate_control_variate-acv_recursive_diff method-approximate_control_variate-search_model_graphs method-approximate_control_variate-pilot_samples method-approximate_control_variate-solution_mode method-approximate_control_variate-truth_fixed_by_pilot method-approximate_control_variate-sqp method-approximate_control_variate-nip method-approximate_control_variate-global_local method-approximate_control_variate-competed_local method-approximate_control_variate-seed_sequence method-approximate_control_variate-fixed_seed method-approximate_control_variate-sample_type method-approximate_control_variate-export_sample_sequence method-approximate_control_variate-convergence_tolerance method-approximate_control_variate-max_iterations method-approximate_control_variate-max_function_evaluations method-approximate_control_variate-rng method-approximate_control_variate-model_pointer **Specification** - *Alias:* acv_sampling - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+==============================+===============================================+ | Required (Choose One) | Solution Approach | `acv_independent_sampling`__ | Sampling scheme within the approximate | | | | | control variate (ACV) algorithm that employs | | | | | independent samples (IS) across model | | | | | pairings | | | +------------------------------+-----------------------------------------------+ | | | `acv_multifidelity`__ | Approximate control variate (ACV) algorithm | | | | | that employs a nested pyramid sample pattern, | | | | | similar to MFMC | | | +------------------------------+-----------------------------------------------+ | | | `acv_recursive_diff`__ | Sampling scheme within the approximate | | | | | control variate (ACV) algorithm that employs | | | | | weighted recursive differences (RD) across | | | | | model pairings | +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Optional | `search_model_graphs`__ | Perform a recursion of admissible DAGs for a | | | | given model ensemble | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `pilot_samples`__ | Initial set of samples for | | | | multilevel/multifidelity sampling methods. | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `solution_mode`__ | Solution mode for multilevel/multifidelity | | | | methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `truth_fixed_by_pilot`__ | Option to suppress any increment to the | | | | number of truth samples | +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Optional (Choose One) | Optimization | `sqp`__ | Use a sequential quadratic programming method | | | Solver | | for solving an optimization sub-problem | | | +------------------------------+-----------------------------------------------+ | | | `nip`__ | Use a nonlinear interior point method for | | | | | solving an optimization sub-problem | | | +------------------------------+-----------------------------------------------+ | | | `global_local`__ | Use a hybrid global-local scheme for solving | | | | | an optimization sub-problem | | | +------------------------------+-----------------------------------------------+ | | | `competed_local`__ | Use a competed local solver scheme for | | | | | solving an optimization sub-problem | +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Optional | `seed_sequence`__ | Sequence of seed values for multi-stage | | | | random sampling | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `fixed_seed`__ | Reuses the same seed value for multiple | | | | random sampling sets | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `sample_type`__ | Selection of sampling strategy | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `export_sample_sequence`__ | Enable export of multilevel/multifidelity | | | | sample sequences to individual files | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `convergence_tolerance`__ | Stopping criterion based on relative error | | | | reduction | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `max_iterations`__ | Number of iterations allowed for optimizers | | | | and adaptive UQ methods | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `max_function_evaluations`__ | Stopping criterion based on maximum function | | | | evaluations | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `rng`__ | Selection of a random number generator | +----------------------------------------------+------------------------------+-----------------------------------------------+ | Optional | `model_pointer`__ | Identifier for model block to be used by a | | | | method | +----------------------------------------------+------------------------------+-----------------------------------------------+ .. __: method-approximate_control_variate-acv_independent_sampling.html __ method-approximate_control_variate-acv_multifidelity.html __ method-approximate_control_variate-acv_recursive_diff.html __ method-approximate_control_variate-search_model_graphs.html __ method-approximate_control_variate-pilot_samples.html __ method-approximate_control_variate-solution_mode.html __ method-approximate_control_variate-truth_fixed_by_pilot.html __ method-approximate_control_variate-sqp.html __ method-approximate_control_variate-nip.html __ method-approximate_control_variate-global_local.html __ method-approximate_control_variate-competed_local.html __ method-approximate_control_variate-seed_sequence.html __ method-approximate_control_variate-fixed_seed.html __ method-approximate_control_variate-sample_type.html __ method-approximate_control_variate-export_sample_sequence.html __ method-approximate_control_variate-convergence_tolerance.html __ method-approximate_control_variate-max_iterations.html __ method-approximate_control_variate-max_function_evaluations.html __ method-approximate_control_variate-rng.html __ method-approximate_control_variate-model_pointer.html **Description** An adaptive sampling method that utilizes multifidelity relationships in order to improve efficiency through variance reduction. It employs an ensemble model to manage an unordered set of lower-fidelity approximations to a single truth model. Compared to multifidelity Monte Carlo (MFMC), ACV is not a recursive emulator based on hierarchical control variate pairings. Rather, the truth model's variance is targeted using each control variate pairing. These pairings are codified with a directed acyclic graph (DAG), such that ACV defines a "peer" DAG where all approximation nodes point to the root node and the root node identifies the reference "truth" model. MFMC, on the other hand, employs a "hierarchical" DAG, where each approximation node points to the next approximation of higher fidelity, ending with the truth model at the root node. While the ensemble of control variates appears identical to MFMC: .. math:: \hat{Q}_{HF}^{CV} = \hat{Q}_{HF}^{MC} - \sum_{i=1}^M \beta_i (\hat{Q}_{LF_i}^{MC} - \mathbb{E}[Q_{LF_i}]) the sample patterns used for the constituent estimators differ as depicted in :cite:p:`GORODETSKY2020109257`, Figure 2, with the :math:`z^1` and :math:`z^2` definitions reflective of the control variate pairings. In the generalized ACV case (:cite:p:`Bomarito2022`) available from the :dakkw:`method-approximate_control_variate-search_model_graphs` specification, three different ACV sampling schemes are supported: ACV-MF (multifidelity), ACV-IS (independent sampling), and ACV-RD (recursive difference), where each scheme supports an enumerative search over admissible DAGs and model subset selections. Each of these three schemes is also supported in non-generalized form for specific DAG definitions, as follows: * ACV-MF: peer DAG in :dakkw:`method-approximate_control_variate` and hierarchical DAG in :dakkw:`method-multifidelity_sampling` * ACV-IS: peer DAG in :dakkw:`method-approximate_control_variate`. * ACV-RD: hierarchical DAG in :dakkw:`method-multilevel_sampling` using the :dakkw:`weighted` option. Finally, the ACV-KL variant (:cite:p:`GORODETSKY2020109257`) is not another sampling scheme, but rather a parametrically defined estimator that enumerates a relatively small subset of admissible DAGs. It is available under the :dakkw:`method-approximate_control_variate-search_model_graphs-kl_recursion` option, using the approaches described in :cite:p:`Bomarito2022`. *Default Behavior* The ``approximate_control_variate`` method employs a number of important default settings: * The DAG defining control variate pairings defaults to a "peer" DAG where all approximation nodes point to the root node and the root node identifies the reference "truth" model. This means that every approximation participates in a sample set that is shared with the truth model (the root allocation), and each approximation (each of the nodes connecting to the root) then has its own augmentation to this shared set. For ACV-IS and ACV-RD, these augmentations are independent. To explore other admissible DAGs, ``search_model_graphs`` can be used. * The default solver is ``global_local``, starting with the DIRECT global solver and proceeding to available local solvers (SQP and NIP) in competition. For larger model ensembles, a purely local approach is more scalable. * Solution mode will be ``online_pilot``, an approach which iterates toward a set of shared samples whose size is consistent with the optimal allocation. * Monte Carlo sample sets are used by default and are most consistent with the underlying theory, but this default can be overridden to use Latin hypercube sample sets using ``sample_type`` ``lhs``. Allocations remain governed by Monte Carlo variance for all cases. *Expected Output* The ``approximate_control_variate`` method reports estimates of the first four moments and a summary of the evaluations performed for each model fidelity and discretization level. The method does not support any level mappings (response, probability, reliability, generalized reliability) at this time. *Expected HDF5 Output* If Dakota was built with HDF5 support and run with the :dakkw:`environment-results_output-hdf5` keyword, this method writes the following results to HDF5: - :ref:`hdf5_results-sampling_moments` (moments only, not confidence intervals) In addition, the execution group has the attribute ``equiv_hf_evals``, which records the equivalent number of high-fidelity evaluations. *Usage Tips* The ``approximate_control_variate`` method must be used in combination with an ensemble model specification that enumerates a truth model and a set of model approximations using either a model form sequence, a discretization level sequence, or a combination of model forms and discretization levels. For each model form and discretization, each instance must either provide a ``solution_level_cost`` or return metadata for estimating cost. For a sequence of discretization levels, ``solution_level_control`` must identify the variable string descriptor that controls the resolution levels and the associated array of relative costs must be provided using ``solution_level_cost``. An alternative to prescribing the cost profile is estimating it on the fly using cost metadata that is returned from the different simulation instances. **Examples** The following method block: .. code-block:: method, model_pointer = 'NONHIER' approximate_control_variate acv_mf nip pilot_samples = 20 seed = 1237 max_iterations = 10 convergence_tolerance = .001 specifies ACV-MF using the nonlinear interior point (NIP) solver in combination with the model identified by the NONHIER pointer. This NONHIER model specification provides a one-dimensional sequence, here defined by a single truth model and a set of unordered approximation models, each with a single (or default) discretization level: .. code-block:: model, id_model = 'NONHIER' surrogate ensemble truth_model = 'HF' unordered_model_fidelities = 'LF1' 'LF2' model, id_model = 'LF1' interface_pointer = 'LF1_INT' simulation solution_level_cost = 1 model, id_model = 'LF2' interface_pointer = 'LF2_INT' simulation solution_level_cost = 16 model, id_model = 'HF' interface_pointer = 'HF_INT' simulation solution_level_cost = 256. Refer to ``dakota/test/dakota_uq_diffusion_acv3_cost4``.in and ``dakota/test/dakota_uq_tunable_acv``.in within the source distribution for this case as well as additional examples. **Theory** Refer to :cite:p:`GORODETSKY2020109257` for more detailed algorithm descriptions, theoretical considerations, and helpful sample set diagrams. Refer to :cite:p:`Bomarito2022` for understanding ACV generalizations for the different control variate pairings that are possible when codified into a more comprehensive set of potential DAGs.