.. _method-import_points-variance_based_decomp: """"""""""""""""""""" variance_based_decomp """"""""""""""""""""" Computes Sobol' main effects using a binned approach .. toctree:: :hidden: :maxdepth: 1 method-import_points-variance_based_decomp-drop_tolerance method-import_points-variance_based_decomp-num_bins **Specification** - *Alias:* None - *Arguments:* None - *Default:* no variance-based decomposition **Child Keywords:** +-------------------------+--------------------+--------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+====================+===============================================+ | Optional | `drop_tolerance`__ | Suppresses output of sensitivity indices with | | | | values lower than this tolerance | +----------------------------------------------+--------------------+-----------------------------------------------+ | Optional | `num_bins`__ | Number of bins used to compute the | | | | variance-based decomposition | +----------------------------------------------+--------------------+-----------------------------------------------+ .. __: method-import_points-variance_based_decomp-drop_tolerance.html __ method-import_points-variance_based_decomp-num_bins.html **Description** Uses unstructured input-output samples to estimate main effect indices. It cannot compute total indices. **Expected Output** Sensitivity indices for main effects *only* will be reported. Main effects (roughly) represent the percent contribution of each individual variable to the variance in the model response. **Examples** .. code-block:: method, sampling sample_type lhs samples = 100 variance_based_decomp vbd_sampling_method binned .. code-block:: method, import_points import_points_file "all_samples.dat" variance_based_decomp Note that since the ``import_points`` method only supports the binned approach, ``vbd_sampling_method`` is not specified. **Theory** The binned approach to computing Sobol' main effect indices is introduced in :cite:p:`Li16`. As opposed to pick-and-freeze approaches like :cite:p:`Sal04`, it does not require a specific sampling structure. Given a set of randomly-generated input-output samples, it computes the main effect index by binning samples, computing a sample statistic for each bin, then computing another sample statistic over the bins. Two algorithms are detailed in :cite:p:`Li16`: computing a sample expectation for each bin, then a sample variance, or computing a sample variance for each bin, then an expectation. The second algorithm is implemented in Dakota.