.. _method-multilevel_sampling-weighted: """""""" weighted """""""" Include control variate weights for each of the recursive differences using in multilevel Monte Carlo (MLMC) .. toctree:: :hidden: :maxdepth: 1 method-multilevel_sampling-weighted-search_model_graphs method-multilevel_sampling-weighted-sqp method-multilevel_sampling-weighted-nip method-multilevel_sampling-weighted-global_local method-multilevel_sampling-weighted-competed_local method-multilevel_sampling-weighted-solver_metric **Specification** - *Alias:* None - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+=========================+===============================================+ | Optional | `search_model_graphs`__ | For weighted multilevel Monte Carlo, this | | | | option activates a search over possible | | | | hierarchical model graphs | +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Optional (Choose One) | Optimization | `sqp`__ | Use a sequential quadratic programming method | | | Solver | | for solving an optimization sub-problem | | | +-------------------------+-----------------------------------------------+ | | | `nip`__ | Use a nonlinear interior point method for | | | | | solving an optimization sub-problem | | | +-------------------------+-----------------------------------------------+ | | | `global_local`__ | Use a hybrid global-local scheme for solving | | | | | an optimization sub-problem | | | +-------------------------+-----------------------------------------------+ | | | `competed_local`__ | Use a competed local solver scheme for | | | | | solving an optimization sub-problem | +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Optional | `solver_metric`__ | Metric employed during numerical solutions in | | | | sampling-based multifidelity UQ methods. | +----------------------------------------------+-------------------------+-----------------------------------------------+ .. __: method-multilevel_sampling-weighted-search_model_graphs.html __ method-multilevel_sampling-weighted-sqp.html __ method-multilevel_sampling-weighted-nip.html __ method-multilevel_sampling-weighted-global_local.html __ method-multilevel_sampling-weighted-competed_local.html __ method-multilevel_sampling-weighted-solver_metric.html **Description** Referring to generalized ACV (:dakkw:`method-approximate_control_variate-search_model_graphs` and :cite:p:`Bomarito2022`), weighted MLMC is a special case of generalized ACV-RD (:dakkw:`method-approximate_control_variate-acv_recursive_diff`) where a hierarchical DAG is employed across the model approximations. As such, a weighted MLMC specification forwards to the generalized ACV solver, but with fixing the DAG to be hierarchical (each approximation node points to the next approximation of higher fidelity/resolution, ending with the truth model at the root node) and fixing the sampling scheme to be ACV-RD. While the use of a hierarchical DAG is required, the approximation selections and orderings within this DAG can be varied, so generalized ACV capabilities for model graph search (different hierarchical orderings) and model selection (different approximation subsets) are available for a specification of weighted MLMC -- see :dakkw:`method-multilevel_sampling-weighted-search_model_graphs`. **Theory** Refer to :cite:p:`Bomarito2022` for understanding ACV generalizations for the different control variate pairings that are possible when codified into a more comprehensive set of potential DAGs.