calibrate_error_multipliers
Calibrate hyper-parameter multipliers on the observation error covariance
Specification
Alias: None
Arguments: None
Default: none
Child Keywords:
Required/Optional |
Description of Group |
Dakota Keyword |
Dakota Keyword Description |
---|---|---|---|
Required (Choose One) |
Calibrate Error Multipliers |
Calibrate one hyper-parameter multiplier across all responses/experiments |
|
Calibrate one hyper-parameter multiplier per experiment |
|||
Calibrate one hyper-parameter multiplier per response |
|||
Calibrate one hyper-parameter multiplier for each response/experiment pair |
|||
Optional |
Shape (alpha) of the inverse gamma hyper-parameter prior |
Description
Calibrate one or more multipliers on the user-provided
observation error covariance (
experiment_variance_type
). Options
include one
multiplier on the whole block-diagonal covariance
structure, one multiplier per_experiment
covariance block, one
multiplier per_response
covariance block, or separate multipliers
for each response/experiment pair (for a total of number experiments X
number response groups).
Default Behavior: No hyper-parameter calibration. When hyper-parameter calibration is enabled, the default prior on the multiplier is a diffuse inverse gamma, with mean and mode approximately 1.0.
Expected Output: Final calibration results will include both inference parameters and one or more calibrated hyper-parameters.
Usage Tips: The per_response option can be useful when each response has its own measurement error process, but all experiments were gathered with the same equipment and conditions. The per_experiment option might be used when working with data from multiple independent laboratories.
Examples
Perform Bayesian calibration with 2 calibration variables
and two hyper-parameter multipliers, one per each of two responses.
The multipliers are assumed the same across the 10 experiments. The
priors on the multipliers are specified using the
hyperprior_alphas
and
hyperprior_betas
keywords.
bayes_calibration queso
samples = 1000 seed = 348
dram
calibrate_error_multipliers per_response
hyperprior_alphas = 27.0
hyperprior_betas = 26.0
variables
uniform_uncertain 2
upper_bounds 1.e8 10.0
lower_bounds 1.e6 0.1
initial_point 2.85e7 2.5
descriptors 'E' 'w'
responses
calibration_terms = 2
calibration_data_file = 'expdata.withsigma.dat'
freeform
num_experiments = 10
experiment_variance_type = 'scalar'