.. _method-multilevel_sampling-weighted-search_model_graphs: """"""""""""""""""" search_model_graphs """"""""""""""""""" For weighted multilevel Monte Carlo, this option activates a search over possible hierarchical model graphs .. toctree:: :hidden: :maxdepth: 1 method-multilevel_sampling-weighted-search_model_graphs-model_selection method-multilevel_sampling-weighted-search_model_graphs-no_recursion method-multilevel_sampling-weighted-search_model_graphs-full_recursion **Specification** - *Alias:* None - *Arguments:* None - *Default:* NO_GRAPH_RECURSION **Child Keywords:** +-------------------------+--------------------+---------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+=====================+===============================================+ | Optional | `model_selection`__ | Perform a recursion of admissible model | | | | subsets for a given model ensemble | +-------------------------+--------------------+---------------------+-----------------------------------------------+ | Required (Choose One) | DAG Ensemble | `no_recursion`__ | Do not recur over admissible DAGs for a given | | | Generation Option | | model ensemble | | | +---------------------+-----------------------------------------------+ | | | `full_recursion`__ | Perform a full recursion of all admissible | | | | | DAGs for a given model ensemble | +-------------------------+--------------------+---------------------+-----------------------------------------------+ .. __: method-multilevel_sampling-weighted-search_model_graphs-model_selection.html __ method-multilevel_sampling-weighted-search_model_graphs-no_recursion.html __ method-multilevel_sampling-weighted-search_model_graphs-full_recursion.html **Description** Referring to :dakkw:`method-approximate_control_variate-acv_recursive_diff`, weighted MLMC is a special case of ACV-RD, resulting in a forward to the generalized ACV solver for the case of a fixed hierarchical DAG. While the use of a hierarchical DAG is required in MLMC, the approximation selections and orderings within this DAG can be varied, so generalized ACV capabilities for model graph search (see :dakkw:`method-multilevel_sampling-weighted-search_model_graphs-full_recursion`) and model selection (see :dakkw:`method-multilevel_sampling-weighted-search_model_graphs-model_selection`) are available. **Examples** Note that the default for weighted MLMC is no search, .. code-block:: method, multilevel_sampling pilot_samples = 20 seed = 1237 weighted max_function_evaluations = 500 with options to activate search over model ordering, .. code-block:: method, multilevel_sampling pilot_samples = 20 seed = 1237 weighted search_model_graphs full_recursion max_function_evaluations = 500 over model subset selection, .. code-block:: method, multilevel_sampling pilot_samples = 20 seed = 1237 weighted search_model_graphs no_recursion model_selection max_function_evaluations = 500 or over both. .. code-block:: method, multilevel_sampling pilot_samples = 20 seed = 1237 weighted search_model_graphs full_recursion model_selection max_function_evaluations = 500