display_format
Information to be reported from mesh adaptive search’s internal records.
Specification
Alias: None
Arguments: STRING
Description
The display_format
keyword is used to specify the set of
information to be reported by the mesh adaptive direct search method.
This is information mostly internal to the method and not reported via
Dakota output.
Default Behavior
By default, only the number of function evaluations (bbe) and the objective function value (obj) are reported.
The full list of options is as follows. Note that case does not matter.
BBE: Blackbox evaluations.
BBO: Blackbox outputs.
EVAL: Evaluations (includes cache hits).
MESH_INDEX: Mesh index.
MESH_SIZE: Mesh size parameter.
OBJ: Objective function value.
POLL_SIZE: Poll size parameter.
SOL: Solution, with format iSOLj where i and j are two (optional) strings: i will be displayed before each coordinate, and j after each coordinate (except the last).
STAT_AVG: The AVG statistic.
STAT_SUM: The SUM statistic defined by argument.
TIME: Wall-clock time.
VARi: Value of variable i. The index 0 corresponds to the first variable.
Expected Outputs
A list of the requested information will be printed to the screen.
Usage Tips
This will most likely only be useful for power users who want to understand and/or report more detailed information on method behavior.
Examples
The following example shows the syntax for specifying
display_format
. Note that all desired information options should be
listed within a single string.
method
mesh_adaptive_search
display_format 'bbe obj poll_size'
seed = 1234
Below is the output reported for the above example.
MADS run {
BBE OBJ POLL_SIZE
1 17.0625000000 2.0000000000 2.0000000000 2.0000000000
2 1.0625000000 2.0000000000 2.0000000000 2.0000000000
13 0.0625000000 1.0000000000 1.0000000000 1.0000000000
24 0.0002441406 0.5000000000 0.5000000000 0.5000000000
41 0.0000314713 0.1250000000 0.1250000000 0.1250000000
43 0.0000028610 0.2500000000 0.2500000000 0.2500000000
54 0.0000000037 0.1250000000 0.1250000000 0.1250000000
83 0.0000000000 0.0078125000 0.0078125000 0.0078125000
105 0.0000000000 0.0009765625 0.0009765625 0.0009765625
112 0.0000000000 0.0009765625 0.0009765625 0.0009765625
114 0.0000000000 0.0019531250 0.0019531250 0.0019531250
135 0.0000000000 0.0004882812 0.0004882812 0.0004882812
142 0.0000000000 0.0004882812 0.0004882812 0.0004882812
153 0.0000000000 0.0004882812 0.0004882812 0.0004882812
159 0.0000000000 0.0009765625 0.0009765625 0.0009765625
171 0.0000000000 0.0004882812 0.0004882812 0.0004882812
193 0.0000000000 0.0000610352 0.0000610352 0.0000610352
200 0.0000000000 0.0000610352 0.0000610352 0.0000610352
207 0.0000000000 0.0000610352 0.0000610352 0.0000610352
223 0.0000000000 0.0000305176 0.0000305176 0.0000305176
229 0.0000000000 0.0000610352 0.0000610352 0.0000610352
250 0.0000000000 0.0000152588 0.0000152588 0.0000152588
266 0.0000000000 0.0000076294 0.0000076294 0.0000076294
282 0.0000000000 0.0000038147 0.0000038147 0.0000038147
288 0.0000000000 0.0000076294 0.0000076294 0.0000076294
314 0.0000000000 0.0000009537 0.0000009537 0.0000009537
320 0.0000000000 0.0000019073 0.0000019073 0.0000019073
321 0.0000000000 0.0000038147 0.0000038147 0.0000038147
327 0.0000000000 0.0000076294 0.0000076294 0.0000076294
354 0.0000000000 0.0000004768 0.0000004768 0.0000004768
361 0.0000000000 0.0000004768 0.0000004768 0.0000004768
372 0.0000000000 0.0000004768 0.0000004768 0.0000004768
373 0.0000000000 0.0000009537 0.0000009537 0.0000009537
389 0.0000000000 0.0000004768 0.0000004768 0.0000004768
400 0.0000000000 0.0000004768 0.0000004768 0.0000004768
417 0.0000000000 0.0000001192 0.0000001192 0.0000001192
444 0.0000000000 0.0000000075 0.0000000075 0.0000000075
459 0.0000000000 0.0000000037 0.0000000037 0.0000000037
461 0.0000000000 0.0000000075 0.0000000075 0.0000000075
488 0.0000000000 0.0000000005 0.0000000005 0.0000000005
492 0.0000000000 0.0000000009 0.0000000009 0.0000000009
494 0.0000000000 0.0000000019 0.0000000019 0.0000000019
501 0.0000000000 0.0000000019 0.0000000019 0.0000000019
518 0.0000000000 0.0000000005 0.0000000005 0.0000000005
530 0.0000000000 0.0000000002 0.0000000002 0.0000000002
537 0.0000000000 0.0000000002 0.0000000002 0.0000000002
564 0.0000000000 0.0000000000 0.0000000000 0.0000000000
566 0.0000000000 0.0000000000 0.0000000000 0.0000000000
583 0.0000000000 0.0000000000 0.0000000000 0.0000000000
590 0.0000000000 0.0000000000 0.0000000000 0.0000000000
592 0.0000000000 0.0000000000 0.0000000000 0.0000000000
604 0.0000000000 0.0000000000 0.0000000000 0.0000000000
606 0.0000000000 0.0000000000 0.0000000000 0.0000000000
629 0.0000000000 0.0000000000 0.0000000000 0.0000000000
636 0.0000000000 0.0000000000 0.0000000000 0.0000000000
658 0.0000000000 0.0000000000 0.0000000000 0.0000000000
674 0.0000000000 0.0000000000 0.0000000000 0.0000000000
} end of run (mesh size reached NOMAD precision)
blackbox evaluations : 674
best feasible solution : ( 1 1 1 ) h=0 f=1.073537728e-52