display_format

Information to be reported from mesh adaptive search’s internal records.

Specification

  • Alias: None

  • Arguments: STRING

Description

The display_format keyword is used to specify the set of information to be reported by the mesh adaptive direct search method. This is information mostly internal to the method and not reported via Dakota output.

Default Behavior

By default, only the number of function evaluations (bbe) and the objective function value (obj) are reported.

The full list of options is as follows. Note that case does not matter.

  • BBE: Blackbox evaluations.

  • BBO: Blackbox outputs.

  • EVAL: Evaluations (includes cache hits).

  • MESH_INDEX: Mesh index.

  • MESH_SIZE: Mesh size parameter.

  • OBJ: Objective function value.

  • POLL_SIZE: Poll size parameter.

  • SOL: Solution, with format iSOLj where i and j are two (optional) strings: i will be displayed before each coordinate, and j after each coordinate (except the last).

  • STAT_AVG: The AVG statistic.

  • STAT_SUM: The SUM statistic defined by argument.

  • TIME: Wall-clock time.

  • VARi: Value of variable i. The index 0 corresponds to the first variable.

Expected Outputs

A list of the requested information will be printed to the screen.

Usage Tips

This will most likely only be useful for power users who want to understand and/or report more detailed information on method behavior.

Examples

The following example shows the syntax for specifying display_format. Note that all desired information options should be listed within a single string.

method
  mesh_adaptive_search
    display_format 'bbe obj poll_size'
    seed = 1234

Below is the output reported for the above example.

MADS run {

 BBE OBJ POLL_SIZE

    1 17.0625000000 2.0000000000 2.0000000000 2.0000000000
    2 1.0625000000 2.0000000000 2.0000000000 2.0000000000
   13 0.0625000000 1.0000000000 1.0000000000 1.0000000000
   24 0.0002441406 0.5000000000 0.5000000000 0.5000000000
   41 0.0000314713 0.1250000000 0.1250000000 0.1250000000
   43 0.0000028610 0.2500000000 0.2500000000 0.2500000000
   54 0.0000000037 0.1250000000 0.1250000000 0.1250000000
   83 0.0000000000 0.0078125000 0.0078125000 0.0078125000
  105 0.0000000000 0.0009765625 0.0009765625 0.0009765625
  112 0.0000000000 0.0009765625 0.0009765625 0.0009765625
  114 0.0000000000 0.0019531250 0.0019531250 0.0019531250
  135 0.0000000000 0.0004882812 0.0004882812 0.0004882812
  142 0.0000000000 0.0004882812 0.0004882812 0.0004882812
  153 0.0000000000 0.0004882812 0.0004882812 0.0004882812
  159 0.0000000000 0.0009765625 0.0009765625 0.0009765625
  171 0.0000000000 0.0004882812 0.0004882812 0.0004882812
  193 0.0000000000 0.0000610352 0.0000610352 0.0000610352
  200 0.0000000000 0.0000610352 0.0000610352 0.0000610352
  207 0.0000000000 0.0000610352 0.0000610352 0.0000610352
  223 0.0000000000 0.0000305176 0.0000305176 0.0000305176
  229 0.0000000000 0.0000610352 0.0000610352 0.0000610352
  250 0.0000000000 0.0000152588 0.0000152588 0.0000152588
  266 0.0000000000 0.0000076294 0.0000076294 0.0000076294
  282 0.0000000000 0.0000038147 0.0000038147 0.0000038147
  288 0.0000000000 0.0000076294 0.0000076294 0.0000076294
  314 0.0000000000 0.0000009537 0.0000009537 0.0000009537
  320 0.0000000000 0.0000019073 0.0000019073 0.0000019073
  321 0.0000000000 0.0000038147 0.0000038147 0.0000038147
  327 0.0000000000 0.0000076294 0.0000076294 0.0000076294
  354 0.0000000000 0.0000004768 0.0000004768 0.0000004768
  361 0.0000000000 0.0000004768 0.0000004768 0.0000004768
  372 0.0000000000 0.0000004768 0.0000004768 0.0000004768
  373 0.0000000000 0.0000009537 0.0000009537 0.0000009537
  389 0.0000000000 0.0000004768 0.0000004768 0.0000004768
  400 0.0000000000 0.0000004768 0.0000004768 0.0000004768
  417 0.0000000000 0.0000001192 0.0000001192 0.0000001192
  444 0.0000000000 0.0000000075 0.0000000075 0.0000000075
  459 0.0000000000 0.0000000037 0.0000000037 0.0000000037
  461 0.0000000000 0.0000000075 0.0000000075 0.0000000075
  488 0.0000000000 0.0000000005 0.0000000005 0.0000000005
  492 0.0000000000 0.0000000009 0.0000000009 0.0000000009
  494 0.0000000000 0.0000000019 0.0000000019 0.0000000019
  501 0.0000000000 0.0000000019 0.0000000019 0.0000000019
  518 0.0000000000 0.0000000005 0.0000000005 0.0000000005
  530 0.0000000000 0.0000000002 0.0000000002 0.0000000002
  537 0.0000000000 0.0000000002 0.0000000002 0.0000000002
  564 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  566 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  583 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  590 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  592 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  604 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  606 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  629 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  636 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  658 0.0000000000 0.0000000000 0.0000000000 0.0000000000
  674 0.0000000000 0.0000000000 0.0000000000 0.0000000000

} end of run (mesh size reached NOMAD precision)

blackbox evaluations                     : 674
best feasible solution                   : ( 1 1 1 ) h=0 f=1.073537728e-52