probability_levels
Specify probability levels at which to compute credible and prediction intervals
Specification
Alias: None
Arguments: REALLIST
Default: No CDF/CCDF response levels to compute
Child Keywords:
Required/Optional |
Description of Group |
Dakota Keyword |
Dakota Keyword Description |
---|---|---|---|
Optional |
This child keyword is currently inactive |
Description
Credible and prediction intervals of model responses are computed for specified
probabilities. Credible intervals are calculated from the response function
values corresponding to the final MCMC chain. Calculation of prediction
intervals consider these response values as well as the experimental
uncertainty, which is specified by the user via the experiment_variance_type
command.
Expected Output
If probability_levels
is specified, Dakota will create a table containing
the credibile intervals for each response function. The corresponding table
containing the prediction intervals will also be created if a
experiment_variance_type
has been specified. This information is output to
the screen and to a file. In addition, the output file contains the means and
standard deviations of each response function and Gaussian approximations of
the 5/95 credible and prediction intervals, in which the lower bound is two
standard deviations below the mean and the upper bound is two standard
deviations above the mean.
Usage Tips
Only one probability level needs to be specified for each desired interval. Both corresponding end points of the intervals are automatically calculated. For example, if 0.05 is specified, both the 0.05 and 0.95 probability levels are output to the screen and output file.
Additional Discussion
Credible intervals propagate uncertainties in parameter density information to the quantity of interest and quantify how well the model fits the provided data. Prediction intervals propagate both parameter and experimental measurement uncertainties and contain the next experimental or simulated observation with the specified probability.
Examples
Below is a Dakota input file specifying the calculation of credible and prediction intervals
method,
bayes_calibration queso
chain_samples = 1000 seed = 348
dram
proposal_covariance
diagonal values 1.0e6 1.0e-1
probability_levels 0.05 0.1
0.075 0.1
variables,
uniform_uncertain 2
upper_bounds 1.e8 10.0
lower_bounds 1.e6 0.1
initial_point 2.85e7 2.5
descriptors 'E' 'w'
continuous_state 4
initial_state 3 40000 500 1000
descriptors 't' 'R' 'X' 'Y'
interface,
direct
analysis_driver = 'mod_cantilever'
responses,
calibration_terms = 2
calibration_data_file = 'dakota_cantilever_queso.withsigma.dat'
freeform
num_experiments = 10
experiment_variance_type = 'scalar'
descriptors = 'stress' 'displacement'
no_gradients
no_hessians
The resulting screen output below shows the table of credible and prediction intervals.
Credibility Intervals for stress
Response Level Probability Level
----------------- -----------------
2.4764049695e+03 5.0000000000e-02
2.8242874802e+03 9.5000000000e-01
2.4990608791e+03 1.0000000000e-01
2.7952985803e+03 9.0000000000e-01
Credibility Intervals for displacement
Response Level Probability Level
----------------- -----------------
2.7409870925e-01 7.5000000000e-02
3.0991296255e-01 9.2500000000e-01
2.7538816802e-01 1.0000000000e-01
3.0889319332e-01 9.0000000000e-01
Prediction Intervals for stress
Response Level Probability Level
----------------- -----------------
2.0964882850e+03 5.0000000000e-02
3.1993026765e+03 9.5000000000e-01
2.1822183238e+03 1.0000000000e-01
3.1099058450e+03 9.0000000000e-01
Prediction Intervals for displacement
Response Level Probability Level
----------------- -----------------
2.3559036055e-01 7.5000000000e-02
3.5097481218e-01 9.2500000000e-01
2.4016170870e-01 1.0000000000e-01
3.4701712866e-01 9.0000000000e-01