.. _variables-poisson_uncertain: """"""""""""""""" poisson_uncertain """"""""""""""""" Aleatory uncertain discrete variable - Poisson **Topics** discrete_variables, aleatory_uncertain_variables .. toctree:: :hidden: :maxdepth: 1 variables-poisson_uncertain-lambdas variables-poisson_uncertain-initial_point variables-poisson_uncertain-descriptors **Specification** - *Alias:* None - *Arguments:* INTEGER - *Default:* no poisson uncertain variables **Child Keywords:** +-------------------------+--------------------+--------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+====================+===============================================+ | Required | `lambdas`__ | The parameter for the Poisson distribution, | | | | the expected number of events in the time | | | | interval of interest | +----------------------------------------------+--------------------+-----------------------------------------------+ | Optional | `initial_point`__ | Initial values for variables | +----------------------------------------------+--------------------+-----------------------------------------------+ | Optional | `descriptors`__ | Labels for the variables | +----------------------------------------------+--------------------+-----------------------------------------------+ .. __: variables-poisson_uncertain-lambdas.html __ variables-poisson_uncertain-initial_point.html __ variables-poisson_uncertain-descriptors.html **Description** The Poisson distribution is used to predict the number of discrete events that happen in a single time interval. The random events occur uniformly and independently. The expected number of occurences in a single time interval is :math:`\lambda` , which must be a positive real number. For example, if events occur on average 4 times per year and we are interested in the distribution of events over six months, :math:`\lambda` would be 2. However, if we were interested in the distribution of events occuring over 5 years, :math:`\lambda` would be 20. The probability mass function for the poisson distribution is given by: .. math:: f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, where - :math:`\lambda` is the expected number of events occuring in a single time interval - :math:`x` is the number of events that occur in this time period - f(x) is the probability that :math:`x` events occur in this time period **Theory** When used with some methods such as design of experiments and multidimensional parameter studies, distribution bounds are inferred to be [0, :math:`\mu + 3 \sigma` ]. For some methods, including vector and centered parameter studies, an initial point is needed for the uncertain variables. When not given explicitly, these variables are initialized to their means.