.. _responses-response_functions:

""""""""""""""""""
response_functions
""""""""""""""""""


Generic response type


.. toctree::
   :hidden:
   :maxdepth: 1

   responses-response_functions-scalar_responses
   responses-response_functions-field_responses


**Specification**

- *Alias:* num_response_functions 

- *Arguments:* INTEGER


**Child Keywords:**

+-------------------------+--------------------+----------------------+-----------------------------------------------+
| Required/Optional       | Description of     | Dakota Keyword       | Dakota Keyword Description                    |
|                         | Group              |                      |                                               |
+=========================+====================+======================+===============================================+
| Optional                                     | `scalar_responses`__ | Number of scalar response functions           |
+----------------------------------------------+----------------------+-----------------------------------------------+
| Optional                                     | `field_responses`__  | Number of field responses functions           |
+----------------------------------------------+----------------------+-----------------------------------------------+

.. __: responses-response_functions-scalar_responses.html
__ responses-response_functions-field_responses.html



**Description**


A generic response data set is specified using
``response_functions``. Each of these functions is simply a response
quantity of interest with no special interpretation taken by the
method in use.

Whereas objective, constraint, and residual functions have special
meanings for optimization and least squares algorithms, the generic
response function data set need not have a specific interpretation and
the user is free to define whatever functional form is convenient.



**Theory**


This type of data set is used by uncertainty
quantification methods, in which the effect of parameter uncertainty
on response functions is quantified, and can also be used in parameter
study and design of experiments methods (although these methods are
not restricted to this data set), in which the effect of parameter
variations on response functions is evaluated.