.. _method-multilevel_sampling-weighted-search_model_graphs: """"""""""""""""""" search_model_graphs """"""""""""""""""" For weighted multilevel Monte Carlo, model graph selection options become available .. toctree:: :hidden: :maxdepth: 1 method-multilevel_sampling-weighted-search_model_graphs-model_selection **Specification** - *Alias:* None - *Arguments:* None - *Default:* NO_GRAPH_RECURSION **Child Keywords:** +-------------------------+--------------------+---------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+=====================+===============================================+ | Optional | `model_selection`__ | Select the best subset of approximations | | | | within weighted multilevel Monte Carlo | +----------------------------------------------+---------------------+-----------------------------------------------+ .. __: method-multilevel_sampling-weighted-search_model_graphs-model_selection.html **Description** Referring to :dakkw:`method-approximate_control_variate-acv_recursive_diff`, weighted MLMC is a special case of ACV-RD, resulting in a forward to the generalized ACV solver for the case of a fixed hierarchical DAG. While the DAG is fixed, other search options in generalized ACV become available -- see :dakkw:`method-multilevel_sampling-weighted-search_model_graphs-model_selection`.