.. _method-bayes_calibration-muq: """ muq """ Markov Chain Monte Carlo algorithms from the MUQ package **Topics** bayesian_calibration .. toctree:: :hidden: :maxdepth: 1 method-bayes_calibration-muq-chain_samples method-bayes_calibration-muq-seed method-bayes_calibration-muq-rng method-bayes_calibration-muq-dram method-bayes_calibration-muq-delayed_rejection method-bayes_calibration-muq-adaptive_metropolis method-bayes_calibration-muq-metropolis_hastings method-bayes_calibration-muq-mala method-bayes_calibration-muq-dr_num_stages method-bayes_calibration-muq-dr_scale_type method-bayes_calibration-muq-dr_scale method-bayes_calibration-muq-am_period_num_steps method-bayes_calibration-muq-am_starting_step method-bayes_calibration-muq-am_scale method-bayes_calibration-muq-mala_step_size method-bayes_calibration-muq-proposal_covariance **Specification** - *Alias:* None - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+=========================+===============================================+ | Required | `chain_samples`__ | Number of Markov Chain Monte Carlo posterior | | | | samples | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `seed`__ | Seed of the random number generator | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `rng`__ | Selection of a random number generator | +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Optional (Choose One) | MCMC Algorithm | `dram`__ | Use the DRAM MCMC algorithm | | | +-------------------------+-----------------------------------------------+ | | | `delayed_rejection`__ | Use the Delayed Rejection MCMC algorithm | | | +-------------------------+-----------------------------------------------+ | | | `adaptive_metropolis`__ | Use the Adaptive Metropolis MCMC algorithm | | | +-------------------------+-----------------------------------------------+ | | | `metropolis_hastings`__ | Use the Metropolis-Hastings MCMC algorithm | | | +-------------------------+-----------------------------------------------+ | | | `mala`__ | Metropolis-adjusted Langevin algorithm | +-------------------------+--------------------+-------------------------+-----------------------------------------------+ | Optional | `dr_num_stages`__ | Number of stages | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `dr_scale_type`__ | Type of scaling to use | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `dr_scale`__ | Scaling parameter | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `am_period_num_steps`__ | Number of steps between updates of the | | | | proposal covariance | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `am_starting_step`__ | Number of steps prior to start of proposal | | | | covariance adaptation | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `am_scale`__ | Sample covariance scaling used to define | | | | proposal covariance | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `mala_step_size`__ | Parameter for the MALA MCMC algorithm in MUQ | +----------------------------------------------+-------------------------+-----------------------------------------------+ | Optional | `proposal_covariance`__ | Defines the technique used to generate the | | | | MCMC proposal covariance. | +----------------------------------------------+-------------------------+-----------------------------------------------+ .. __: method-bayes_calibration-muq-chain_samples.html __ method-bayes_calibration-muq-seed.html __ method-bayes_calibration-muq-rng.html __ method-bayes_calibration-muq-dram.html __ method-bayes_calibration-muq-delayed_rejection.html __ method-bayes_calibration-muq-adaptive_metropolis.html __ method-bayes_calibration-muq-metropolis_hastings.html __ method-bayes_calibration-muq-mala.html __ method-bayes_calibration-muq-dr_num_stages.html __ method-bayes_calibration-muq-dr_scale_type.html __ method-bayes_calibration-muq-dr_scale.html __ method-bayes_calibration-muq-am_period_num_steps.html __ method-bayes_calibration-muq-am_starting_step.html __ method-bayes_calibration-muq-am_scale.html __ method-bayes_calibration-muq-mala_step_size.html __ method-bayes_calibration-muq-proposal_covariance.html **Description** The ``muq`` method supports the following MCMC algorithms: adaptive metropolis (AM), Metropolis Hasting (MH), delayed rejection (DR), delayed-rejection adaptive metropolis (DRAM), or Metropolis-adjusted Langevin algorithm (MALA). The ``muq`` method is currently an experimental method that relies on algorithms from MIT's MUQ code documented at: https://bitbucket.org/mituq/muq2/src/master/