.. _method-multifidelity_function_train-p_refinement-uniform: """"""" uniform """"""" Refine an expansion uniformly in all dimensions. .. toctree:: :hidden: :maxdepth: 1 method-multifidelity_function_train-p_refinement-uniform-increment_start_rank method-multifidelity_function_train-p_refinement-uniform-increment_start_order method-multifidelity_function_train-p_refinement-uniform-increment_max_rank method-multifidelity_function_train-p_refinement-uniform-increment_max_order method-multifidelity_function_train-p_refinement-uniform-increment_max_rank_order **Specification** - *Alias:* None - *Arguments:* None **Child Keywords:** +-------------------------+--------------------+------------------------------+-----------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+==============================+===============================================+ | Required (Choose One) | Uniform Refinement | `increment_start_rank`__ | candidate generation by advancement of | | | Approach | | starting rank | | | +------------------------------+-----------------------------------------------+ | | | `increment_start_order`__ | candidate generation by advancement of | | | | | starting basis order | | | +------------------------------+-----------------------------------------------+ | | | `increment_max_rank`__ | candidate generation by advancement of | | | | | maximum rank | | | +------------------------------+-----------------------------------------------+ | | | `increment_max_order`__ | candidate generation by advancement of | | | | | maximum basis order | | | +------------------------------+-----------------------------------------------+ | | | `increment_max_rank_order`__ | candidate generation by advancement of | | | | | maximum rank and maximum basis order | +-------------------------+--------------------+------------------------------+-----------------------------------------------+ .. __: method-multifidelity_function_train-p_refinement-uniform-increment_start_rank.html __ method-multifidelity_function_train-p_refinement-uniform-increment_start_order.html __ method-multifidelity_function_train-p_refinement-uniform-increment_max_rank.html __ method-multifidelity_function_train-p_refinement-uniform-increment_max_order.html __ method-multifidelity_function_train-p_refinement-uniform-increment_max_rank_order.html **Description** The quadrature_order or sparse_grid_level are ramped by one on each refinement iteration until either of the two convergence controls is satisfied. For the uniform refinement case with regression approaches, the expansion_order is ramped by one on each iteration while the oversampling ratio (either defined by collocation_ratio or inferred from collocation_points based on the initial expansion) is held fixed.