.. _model-surrogate-global-dace_method_pointer-auto_refinement: """"""""""""""" auto_refinement """"""""""""""" Experimental auto-refinement of surrogate model **Topics** surrogate_models .. toctree:: :hidden: :maxdepth: 1 model-surrogate-global-dace_method_pointer-auto_refinement-max_iterations model-surrogate-global-dace_method_pointer-auto_refinement-max_function_evaluations model-surrogate-global-dace_method_pointer-auto_refinement-convergence_tolerance model-surrogate-global-dace_method_pointer-auto_refinement-soft_convergence_limit model-surrogate-global-dace_method_pointer-auto_refinement-cross_validation_metric **Specification** - *Alias:* None - *Arguments:* None - *Default:* no refinement **Child Keywords:** +-------------------------+--------------------+------------------------------+---------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+==============================+=============================================+ | Optional | `max_iterations`__ | Number of iterations allowed for optimizers | | | | and adaptive UQ methods | +----------------------------------------------+------------------------------+---------------------------------------------+ | Optional | `max_function_evaluations`__ | Number of function evaluations allowed for | | | | optimizers | +----------------------------------------------+------------------------------+---------------------------------------------+ | Optional | `convergence_tolerance`__ | Cross-validation threshold for surrogate | | | | convergence | +----------------------------------------------+------------------------------+---------------------------------------------+ | Optional | `soft_convergence_limit`__ | Maximum number of iterations without | | | | improvement in cross-validation | +----------------------------------------------+------------------------------+---------------------------------------------+ | Optional | `cross_validation_metric`__ | Choice of error metric to satisfy | +----------------------------------------------+------------------------------+---------------------------------------------+ .. __: model-surrogate-global-dace_method_pointer-auto_refinement-max_iterations.html __ model-surrogate-global-dace_method_pointer-auto_refinement-max_function_evaluations.html __ model-surrogate-global-dace_method_pointer-auto_refinement-convergence_tolerance.html __ model-surrogate-global-dace_method_pointer-auto_refinement-soft_convergence_limit.html __ model-surrogate-global-dace_method_pointer-auto_refinement-cross_validation_metric.html **Description** (Experimental option) Automatically refine the surrogate model until desired cross-validation quality is achieved. Refinement is accomplished by iteratively adding more data to the training set until the cross-validation ``convergence_tolerance`` is achieved, or ``max_function_evaluations`` or ``max_iterations`` is exceeded. The amount of new training data that is incorporated each iteration is specified in the DACE method that is referred to by the model's ``dace_method_pointer``. See :dakkw:`method-sampling-refinement_samples` for more information.