.. _method-surrogate_based_local-merit_function: """""""""""""" merit_function """""""""""""" Select type of penalty or merit function .. toctree:: :hidden: :maxdepth: 1 method-surrogate_based_local-merit_function-penalty_merit method-surrogate_based_local-merit_function-adaptive_penalty_merit method-surrogate_based_local-merit_function-lagrangian_merit method-surrogate_based_local-merit_function-augmented_lagrangian_merit **Specification** - *Alias:* None - *Arguments:* None - *Default:* augmented_lagrangian_merit **Child Keywords:** +-------------------------+--------------------+--------------------------------+---------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+================================+=============================================+ | Required (Choose One) | Merit Function | `penalty_merit`__ | Use penalty merit function | | | +--------------------------------+---------------------------------------------+ | | | `adaptive_penalty_merit`__ | Use adaptive penalty merit function | | | +--------------------------------+---------------------------------------------+ | | | `lagrangian_merit`__ | Use first-order Lagrangian merit function | | | +--------------------------------+---------------------------------------------+ | | | `augmented_lagrangian_merit`__ | Use combined penalty and zeroth-order | | | | | Lagrangian merit function | +-------------------------+--------------------+--------------------------------+---------------------------------------------+ .. __: method-surrogate_based_local-merit_function-penalty_merit.html __ method-surrogate_based_local-merit_function-adaptive_penalty_merit.html __ method-surrogate_based_local-merit_function-lagrangian_merit.html __ method-surrogate_based_local-merit_function-augmented_lagrangian_merit.html **Description** Following optimization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be selected to be a simple penalty function with penalty ramped by surrogate_based_local iteration number ( ``penalty_merit``), an adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iterates which decrease the constraint violation ( ``adaptive_penalty_merit``), a Lagrangian merit function which employs first-order Lagrange multiplier updates ( ``lagrangian_merit``), or an augmented Lagrangian merit function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates ( ``augmented_lagrangian_merit``). When an augmented Lagrangian is selected for either the subproblem objective or the merit function (or both), updating of penalties and multipliers follows the approach described in :cite:p:`Con00`.