.. _method-surrogate_based_local-approx_subproblem: """"""""""""""""" approx_subproblem """"""""""""""""" Identify functions to be included in surrogate merit function .. toctree:: :hidden: :maxdepth: 1 method-surrogate_based_local-approx_subproblem-original_primary method-surrogate_based_local-approx_subproblem-single_objective method-surrogate_based_local-approx_subproblem-augmented_lagrangian_objective method-surrogate_based_local-approx_subproblem-lagrangian_objective method-surrogate_based_local-approx_subproblem-original_constraints method-surrogate_based_local-approx_subproblem-linearized_constraints method-surrogate_based_local-approx_subproblem-no_constraints **Specification** - *Alias:* None - *Arguments:* None - *Default:* original_primary original_constraints **Child Keywords:** +-------------------------+--------------------+------------------------------------+---------------------------------------------+ | Required/Optional | Description of | Dakota Keyword | Dakota Keyword Description | | | Group | | | +=========================+====================+====================================+=============================================+ | Required (Choose One) | Objective | `original_primary`__ | Construct approximations of all primary | | | Formulation | | functions | | | +------------------------------------+---------------------------------------------+ | | | `single_objective`__ | Construct approximation a single objective | | | | | functions only | | | +------------------------------------+---------------------------------------------+ | | | `augmented_lagrangian_objective`__ | Augmented Lagrangian approximate subproblem | | | | | formulation | | | +------------------------------------+---------------------------------------------+ | | | `lagrangian_objective`__ | Lagrangian approximate subproblem | | | | | formulation | +-------------------------+--------------------+------------------------------------+---------------------------------------------+ | Required (Choose One) | Constraint | `original_constraints`__ | Use the constraints directly | | | Formulation +------------------------------------+---------------------------------------------+ | | | `linearized_constraints`__ | Use linearized approximations to the | | | | | constraints | | | +------------------------------------+---------------------------------------------+ | | | `no_constraints`__ | Don't use constraints | +-------------------------+--------------------+------------------------------------+---------------------------------------------+ .. __: method-surrogate_based_local-approx_subproblem-original_primary.html __ method-surrogate_based_local-approx_subproblem-single_objective.html __ method-surrogate_based_local-approx_subproblem-augmented_lagrangian_objective.html __ method-surrogate_based_local-approx_subproblem-lagrangian_objective.html __ method-surrogate_based_local-approx_subproblem-original_constraints.html __ method-surrogate_based_local-approx_subproblem-linearized_constraints.html __ method-surrogate_based_local-approx_subproblem-no_constraints.html **Description** First, the "primary" functions (that is, the objective functions or calibration terms) in the approximate subproblem can be selected to be surrogates of the original primary functions ( ``original_primary``), a single objective function ( ``single_objective``) formed from the primary function surrogates, or either an augmented Lagrangian merit function ( ``augmented_lagrangian_objective``) or a Lagrangian merit function ( ``lagrangian_objective``) formed from the primary and secondary function surrogates. The former option may imply the use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization method to solve the approximate subproblem, depending on the definition of the primary functions. The latter three options all imply the use of a single objective optimization method regardless of primary function definition. Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original constraints ( ``original_constraints``) or linearized approximations to the surrogate constraints ( ``linearized_constraints``), or constraints can be omitted from the subproblem ( ``no_constraints``).