.. _method-bayes_calibration-muq-dram: """" dram """" Use the DRAM MCMC algorithm **Topics** bayesian_calibration .. toctree:: :hidden: :maxdepth: 1 **Specification** - *Alias:* None - *Arguments:* None - *Default:* dram **Description** The type of Markov Chain Monte Carlo used. This keyword specifies the use of DRAM, (Delayed Rejection Adaptive Metropolis) :cite:p:`Haario`. *Default Behavior* Five MCMC algorithm variants are supported: ``dram``, ``delayed_rejection``, ``adaptive_metropolis``, ``metropolis_hastings``, and ``multilevel``. The default is ``dram``. *Usage Tips* If the user knows very little about the proposal covariance, using dram is a recommended strategy. The proposal covariance is adaptively updated, and the delayed rejection may help improve low acceptance rates. **Examples** .. code-block:: method, bayes_calibration queso dram samples = 10000 seed = 348