.. _model-surrogate-non_hierarchical-unordered_model_fidelities: """""""""""""""""""""""""" unordered_model_fidelities """""""""""""""""""""""""" Specification of an unordered ensemble of low-fidelity approximations .. toctree:: :hidden: :maxdepth: 1 **Specification** - *Alias:* approximation_models - *Arguments:* STRINGLIST **Description** A ``non_hierarchical`` surrogate model manages an unordered set of low-fidelity model approximations, each of which may include hyper-parameter resolution controls (in the case of a simulation model) or additional model recursions. Any corresponding sequence specifications within methods (e.g., ``quadrature_order_sequence``, ``sparse_grid_level_sequence``, ``expansion_order_sequence``, etc. within stochastic expansion methods) should be synchronized with the order in the model listing. Internal to the non-hierarchical model, subsets of the model ensemble may be active for any given evaluation, as dictated by the iterative algorithm in use. **Examples** .. code-block:: model, id_model = 'NONHIERARCH' surrogate non_hierarchical unordered_model_fidelities = 'LF1' 'LF2' truth_model_pointer = 'HF' model, id_model = 'LF1' simulation interface_pointer = 'LF1_DRIVER' solution_level_cost = 1. model, id_model = 'LF2' simulation interface_pointer = 'LF2_DRIVER' solution_level_cost = 2.4 model, id_model = 'HF' simulation interface_pointer = 'HF_DRIVER' solution_level_cost = 256.